aboutsummaryrefslogtreecommitdiff
path: root/report2
diff options
context:
space:
mode:
authorVasil Zlatanov <v@skozl.com>2018-12-10 17:21:38 +0000
committerVasil Zlatanov <v@skozl.com>2018-12-10 17:21:38 +0000
commit2a5c62f9ea50971ba25c3e8f519e224093ec0090 (patch)
treedb745bb49604da310940ec9bea6f5ba0071cc02b /report2
parentc031478576e1e1dbc285e2d7815c6f772ab00a01 (diff)
downloadvz215_np1915-2a5c62f9ea50971ba25c3e8f519e224093ec0090.tar.gz
vz215_np1915-2a5c62f9ea50971ba25c3e8f519e224093ec0090.tar.bz2
vz215_np1915-2a5c62f9ea50971ba25c3e8f519e224093ec0090.zip
s/propose/evaluate/
Diffstat (limited to 'report2')
-rwxr-xr-xreport2/metadata.yaml2
1 files changed, 1 insertions, 1 deletions
diff --git a/report2/metadata.yaml b/report2/metadata.yaml
index f35d6aa..20375f9 100755
--- a/report2/metadata.yaml
+++ b/report2/metadata.yaml
@@ -10,7 +10,7 @@ abstract: |
This report analyses distance metrics learning techniques with regards to
identification accuracy for the dataset CUHK03. The baseline method used for
identification is Eucdidian based Nearest Neighbors based on Euclidean distance.
- The improved approach we propose utilises Jaccardian metrics to rearrange the NN
+ The improved approach evaluated utilises Jaccardian metrics to rearrange the NN
ranklist based on reciprocal neighbours. While this approach is more complex and introduced new hyperparameter, significant accuracy improvements are observed -
approximately 10% increased Top-1 identifications, and good improvements for Top-$N$ accuracy with low $N$.
...