aboutsummaryrefslogtreecommitdiff
path: root/report2
diff options
context:
space:
mode:
authorVasil Zlatanov <v@skozl.com>2018-12-10 16:17:42 +0000
committerVasil Zlatanov <v@skozl.com>2018-12-10 16:17:42 +0000
commit8874aec6c05402f05b2b01b8b907dd8f8468719d (patch)
tree6be1c13adf17a3bf9d40aeba31ed6e0c48566a1f /report2
parent61a972f93c94f276aeffd4fded902810117d2391 (diff)
downloadvz215_np1915-8874aec6c05402f05b2b01b8b907dd8f8468719d.tar.gz
vz215_np1915-8874aec6c05402f05b2b01b8b907dd8f8468719d.tar.bz2
vz215_np1915-8874aec6c05402f05b2b01b8b907dd8f8468719d.zip
Rearrange intro
Diffstat (limited to 'report2')
-rwxr-xr-xreport2/paper.md44
1 files changed, 19 insertions, 25 deletions
diff --git a/report2/paper.md b/report2/paper.md
index 0ceeedd..e4c3ec0 100755
--- a/report2/paper.md
+++ b/report2/paper.md
@@ -1,17 +1,13 @@
-# Summary
-In this report we analysed how distance metrics learning affects classification
-accuracy for the dataset CUHK03. The baseline method used for classification is
-Nearest Neighbors based on Euclidean distance. The improved approach we propose
-mixes Jaccardian and Mahalanobis metrics to obtain a ranklist that takes into
-account also the reciprocal neighbors. This approach is computationally more
-complex, since the matrices representing distances are effectively calculated
-twice. However it is possible to observe a significant accuracy improvement of
-around 10% for the $@rank1$ case. Accuracy improves overall, especially for
-$@rankn$ cases with low n.
-
# Formulation of the Addresssed Machine Learning Problem
-## CUHK03
+## Probelm Definition
+
+The problem to solve is to create a ranklist for each image of the query set
+by finding the nearest neighbor(s) within a gallery set. However gallery images
+with the same label and taken from the same camera as the query image should
+not be considered when forming the ranklist.
+
+## Dataset - CUHK03
The dataset CUHK03 contains 14096 pictures of people captured from two
different cameras. The feature vectors used come from passing the
@@ -23,13 +19,6 @@ on a training set (train_idx, adequately split between test, train and
validation keeping the same number of identities). This prevents overfitting
the algorithm to the specific data associated with query_idx and gallery_idx.
-## Probelm to solve
-
-The problem to solve is to create a ranklist for each image of the query set
-by finding the nearest neighbor(s) within a gallery set. However gallery images
-with the same label and taken from the same camera as the query image should
-not be considered when forming the ranklist.
-
## Nearest Neighbor ranklist
Nearest Neighbor aims to find the gallery image whose feature are the closest to
@@ -46,7 +35,7 @@ EXPLAIN KNN BRIEFLY
\begin{figure}
\begin{center}
\includegraphics[width=20em]{fig/baseline.pdf}
-\caption{Recognition accuracy of baseline Nearest Neighbor @rank k}
+\caption{Top K Accuracy for Nearest Neighbour classification}
\label{fig:baselineacc}
\end{center}
\end{figure}
@@ -54,26 +43,31 @@ EXPLAIN KNN BRIEFLY
\begin{figure}
\begin{center}
\includegraphics[width=22em]{fig/eucranklist.png}
-\caption{Ranklist @rank10 generated for 5 query images}
+\caption{Top 10 ranklist for 5 probes}
\label{fig:eucrank}
\end{center}
\end{figure}
-
# Suggested Improvement
\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/ranklist.png}
-\caption{Ranklist (improved method) @rank10 generated for 5 query images}
+\caption{Top 10 ranklist (improved method) 5 probes}
\label{fig:ranklist2}
\end{center}
\end{figure}
+
+TODO:
+~~
+s/kNN/NN/
+~~
+
\begin{figure}
\begin{center}
\includegraphics[width=20em]{fig/comparison.pdf}
-\caption{Comparison of recognition accuracy @rank k}
+\caption{Top K Accurarcy}
\label{fig:baselineacc}
\end{center}
\end{figure}
@@ -81,7 +75,7 @@ EXPLAIN KNN BRIEFLY
\begin{figure}
\begin{center}
\includegraphics[width=17em]{fig/pqvals.pdf}
-\caption{Recognition accuracy varying K1 and K2}
+\caption{Top 1 Accuracy when k1 and k2}
\label{fig:pqvals}
\end{center}
\end{figure}