diff options
author | nunzip <np.scarh@gmail.com> | 2018-11-16 17:32:39 +0000 |
---|---|---|
committer | nunzip <np.scarh@gmail.com> | 2018-11-16 17:32:39 +0000 |
commit | 55e4c2c148c1e4b0714671da774954d739548fb6 (patch) | |
tree | b9ab347323c36d45faba3d9b0e3ce289c7d70e8f /report | |
parent | 4684461aa5a579111754d645aafe76257fae9644 (diff) | |
download | vz215_np1915-55e4c2c148c1e4b0714671da774954d739548fb6.tar.gz vz215_np1915-55e4c2c148c1e4b0714671da774954d739548fb6.tar.bz2 vz215_np1915-55e4c2c148c1e4b0714671da774954d739548fb6.zip |
Write first part of Q3
Diffstat (limited to 'report')
-rwxr-xr-x | report/paper.md | 51 |
1 files changed, 49 insertions, 2 deletions
diff --git a/report/paper.md b/report/paper.md index f3bd549..6291273 100755 --- a/report/paper.md +++ b/report/paper.md @@ -317,8 +317,8 @@ LDA and it improves recognition performances with respect to PCA and LDA. In this section we will perform PCA-LDA recognition with NN classification. Varying the values of M_pca and M_lda we obtain the average recognition accuracies -reported in figure \ref{ldapca_acc}. Peak accuracy of 94.7% can be observed for M_pca=115, M_lda=41; -howeverer accuracies above 92% can be observed for M_pca values between 90 and 130 and +reported in figure \ref{ldapca_acc}. Peak accuracy of 93% can be observed for M_pca=115, M_lda=41; +howeverer accuracies above 90% can be observed for M_pca values between 90 and 130 and M_lda values between 30 and 50. Recognition accuracy is significantly higher than PCA, and the run time is roughly the same, @@ -332,6 +332,53 @@ vaying between 0.11s(low M_pca) and 0.19s(high M_pca). \end{center} \end{figure} +DD RANK OF SCATTER MATRICES + +Testing with M_lda=50 and M_pca=115 gives 92.9% accuracy. The results of such test can be +observed in the confusion matrix shown in figure \ref{ldapca_cm}. + +\begin{figure} +\begin{center} +\includegraphics[width=20em]{fig/cmldapca.pdf} +\caption{PCA-LDA NN Recognition Confusion Matrix Mlda=50, Mpca=115} +\label{ldapca_cm} +\end{center} +\end{figure} + +Two recognition examples are reported below: success(figure \ref{succ_ldapca}), failure(figure \ref{fail_ldapca}) + +\begin{figure} +\begin{center} +\includegraphics[width=7em]{fig/ldapcaf2.pdf} +\includegraphics[width=7em]{fig/ldapcaf1.pdf} +\label{fail_ldapca} +\caption{Failure case for PCA-LDA. Test face left. NN right} +\end{center} +\end{figure} + +\begin{figure} +\begin{center} +\includegraphics[width=7em]{fig/ldapcas1.pdf} +\includegraphics[width=7em]{fig/ldapcas2.pdf} +\label{succ_ldapca} +\caption{Success case for PCA-LDA. Test face left. NN right} +\end{center} +\end{figure} + +The PCA-LDA method allows to obtain a much higher recognition accuracy compared to PCA. +The achieved separation between classes and reduction between inner class-distance +that makes such results possible can be observed in figure \ref{subspaces}, in which +the 3 features of the subspaces obtained are graphed. + +\begin{figure} +\begin{center} +\includegraphics[width=12em]{fig/SubspaceQ1.pdf} +\includegraphics[width=12em]{fig/SubspaceQL1.pdf} +\label{subspaces} +\caption{Generated Subspaces (3 features). PCA on the left. PCA-LDA on the right} +\end{center} +\end{figure} + # Question 3, LDA Ensemble for Face Recognition, PCA-LDA Ensemble # References |