aboutsummaryrefslogtreecommitdiff
path: root/report
diff options
context:
space:
mode:
authorVasil Zlatanov <v@skozl.com>2018-11-20 19:00:41 +0000
committerVasil Zlatanov <v@skozl.com>2018-11-20 19:00:41 +0000
commit97df0719d0c47d76ba8c6af6feca7427513f0e5e (patch)
tree2c33716e10a76b3ab41aa244a9548d11f55ffd42 /report
parentd34f8536e3ae31c8e39043a73b8f26195d7a39e9 (diff)
parent1e0e0800a64c0adcf13021795fa064e86efd3f74 (diff)
downloadvz215_np1915-97df0719d0c47d76ba8c6af6feca7427513f0e5e.tar.gz
vz215_np1915-97df0719d0c47d76ba8c6af6feca7427513f0e5e.tar.bz2
vz215_np1915-97df0719d0c47d76ba8c6af6feca7427513f0e5e.zip
Merge branch 'master' of skozl.com:e4-pattern
Diffstat (limited to 'report')
-rwxr-xr-x[-rw-r--r--]report/fig/bagging.pdfbin15360 -> 15360 bytes
-rwxr-xr-x[-rw-r--r--]report/fig/ensemble-cm.pdfbin12995 -> 12995 bytes
-rwxr-xr-xreport/fig/memalt.pdfbin0 -> 28022 bytes
-rwxr-xr-xreport/fig/memnn.pdfbin0 -> 30606 bytes
-rwxr-xr-x[-rw-r--r--]report/fig/random-ensemble.pdfbin15037 -> 15037 bytes
-rwxr-xr-xreport/paper.md21
6 files changed, 16 insertions, 5 deletions
diff --git a/report/fig/bagging.pdf b/report/fig/bagging.pdf
index 3700851..3700851 100644..100755
--- a/report/fig/bagging.pdf
+++ b/report/fig/bagging.pdf
Binary files differ
diff --git a/report/fig/ensemble-cm.pdf b/report/fig/ensemble-cm.pdf
index f79b924..f79b924 100644..100755
--- a/report/fig/ensemble-cm.pdf
+++ b/report/fig/ensemble-cm.pdf
Binary files differ
diff --git a/report/fig/memalt.pdf b/report/fig/memalt.pdf
new file mode 100755
index 0000000..acc9ead
--- /dev/null
+++ b/report/fig/memalt.pdf
Binary files differ
diff --git a/report/fig/memnn.pdf b/report/fig/memnn.pdf
new file mode 100755
index 0000000..9689e8f
--- /dev/null
+++ b/report/fig/memnn.pdf
Binary files differ
diff --git a/report/fig/random-ensemble.pdf b/report/fig/random-ensemble.pdf
index 6123af1..6123af1 100644..100755
--- a/report/fig/random-ensemble.pdf
+++ b/report/fig/random-ensemble.pdf
Binary files differ
diff --git a/report/paper.md b/report/paper.md
index 523e6a1..5c145c2 100755
--- a/report/paper.md
+++ b/report/paper.md
@@ -172,7 +172,9 @@ The alternative method shows overall a better performance (see figure \ref{fig:a
for M=5. The maximum M non zero eigenvectors that can be used will in this case be at most
the amount of training samples per class minus one, since the same amount of eigenvectors
will be used for each generated class-subspace.
-A major drawback is the increase in execution time (from table \ref{tab:time}, 1.1s on average).
+A major drawback is the increase in execution time (from table \ref{tab:time}, 1.1s on average). However the total memory used with the alternative
+method is close to the one used with NN. As it can be seen in Appendix \ref{fig:mem}, since we only store the reconstruction error, and the
+memory associated with storing the different eigenvectors is deallocated, the total memory usage for alternative method is slightly lower.
\begin{figure}
\begin{center}
@@ -260,9 +262,7 @@ We can model the Lagrange optimization problem under the constraint of ||*e*||
To minimize we take the derivative with respect to *e* and equate L to zero: $\frac
{\partial L(e\lambda)}{\partial e}=\frac{\partial F\textsubscript{t}(e)}{\partial e}
-+\frac{\partial\lambda(||e||\textsuperscript{2}-1)}{\partial e}=0$.
-
-Being $\nabla F\textsubscript{t}(e)= (1-t)Se+\frac{t}{<e,S\textsubscript{W}e>
++\frac{\partial\lambda(||e||\textsuperscript{2}-1)}{\partial e}=0$. Being $\nabla F\textsubscript{t}(e)= (1-t)Se+\frac{t}{<e,S\textsubscript{W}e>
+\epsilon}S\textsubscript{B}e-t\frac{<e,S\textsubscript{B}e>}{(<e,S\textsubscript{W}
e>+\epsilon)\textsuperscript{2}S\textsubscript{W}e}$, we obtain that our goal is to
find $\nabla F\textsubscript{t}(e)=\lambda e$, which means making $\nabla F\textsubscript{t}(e)$
@@ -421,7 +421,7 @@ The optimal number of constant and random eigenvectors to use is therefore an in
\end{center}
\end{figure}
-The optimal randomness after doing an exhaustive search as seen on figure \ref{fig:opti-rand}peaks at
+The optimal randomness after doing an exhaustive search as seen on figure \ref{fig:opti-rand} peaks at
95 randomised eigenvectors out of 155 total eigenvectors, or 60 static and 95 random eigenvectors. The values of $M_{\textrm{lda}}$ in the figures is 51.
The red peaks on the 3d-plot represent the proportion of randomised eigenvectors which achieve the optimal accuracy, which have been further plotted in figure \ref{fig:opt-2d}. We found that for our data, the optimal ratio of random eigenvectors for a given $M$ is between $0.6$ and $0.9$.
@@ -527,6 +527,17 @@ LDA-PCA & 0.11 & 0.19 & 0.13 \\ \hline
\label{tab:time}
\end{table}
+### Memory Usage for NN and alternative method
+
+\begin{figure}
+\begin{center}
+\includegraphics[width=15em]{fig/memnn.pdf}
+\includegraphics[width=15em]{fig/memalt.pdf}
+\caption{Memory Usage for NN and alternative method}
+\label{fig:mem}
+\end{center}
+\end{figure}
+
## Code
All code and \LaTeX sources are available at: