aboutsummaryrefslogtreecommitdiff
path: root/train.py
diff options
context:
space:
mode:
authornunzip <np_scarh@e4-pattern-vm.europe-west4-a.c.electric-orbit-223819.internal>2018-12-05 19:12:56 +0000
committernunzip <np_scarh@e4-pattern-vm.europe-west4-a.c.electric-orbit-223819.internal>2018-12-05 19:12:56 +0000
commit54e0552d2f14e734809912ca0f4e7ffa1e8a682e (patch)
tree0c7a2a7b66cf6c0200ee070f1dff1656f2bdfbc5 /train.py
parent60189ef2705ea441cadff4afd63fe396edb6550a (diff)
parent219432c1bf2d9edd9fe7d2d9108627646447a0ec (diff)
downloadvz215_np1915-54e0552d2f14e734809912ca0f4e7ffa1e8a682e.tar.gz
vz215_np1915-54e0552d2f14e734809912ca0f4e7ffa1e8a682e.tar.bz2
vz215_np1915-54e0552d2f14e734809912ca0f4e7ffa1e8a682e.zip
Resolve conflict lambda
Diffstat (limited to 'train.py')
-rwxr-xr-xtrain.py286
1 files changed, 0 insertions, 286 deletions
diff --git a/train.py b/train.py
deleted file mode 100755
index c5d4389..0000000
--- a/train.py
+++ /dev/null
@@ -1,286 +0,0 @@
-#!/usr/bin/env python
-# Author: Vasil Zlatanov, Nunzio Pucci
-# EE4 Pattern Recognition coursework
-#
-# usage: train.py [-h] -i DATA [-m EIGEN] [-M REIGEN] [-e ENSEMBLE] [-b]
-# [-R RANDOM] [-n NEIGHBORS] [-f FACES] [-c] [-s SEED]
-# [-t SPLIT] [-2] [-p] [-l] [-r RECONSTRUCT] [-cm] [-q] [-pr]
-# [-alt]
-
-import matplotlib.pyplot as plt
-from mpl_toolkits.mplot3d import Axes3D
-import sys
-import random
-import os
-import psutil
-from random import randint
-
-from sklearn.neighbors import KNeighborsClassifier
-from sklearn.decomposition import PCA
-from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
-from sklearn.model_selection import train_test_split
-from sklearn.preprocessing import StandardScaler
-from sklearn.metrics import confusion_matrix
-from sklearn.metrics import accuracy_score
-
-import argparse
-import numpy as np
-
-from numpy import genfromtxt
-from numpy import linalg as LA
-
-from timeit import default_timer as timer
-
-n_faces = 52
-n_cases = 10
-n_pixels = 2576
-
-# subtract the normal face from each row of the face matrix
-def normalise_faces(deviations_tr, average_face, faces):
- faces = np.subtract(faces, np.tile(average_face, (faces.shape[0],1)))
- return np.divide(faces, deviations_tr)
-
-# Split data into training and testing sets
-def test_split(n_faces, raw_faces, split, seed):
- random.seed(seed)
-
- raw_faces_split = np.split(raw_faces,n_cases)
- n_training_faces = int(round(n_cases*(1 - split)))
- n_test_faces = n_cases - n_training_faces
- faces_train = np.zeros((n_faces, n_training_faces, n_pixels))
- faces_test = np.zeros((n_faces, n_test_faces, n_pixels))
- target_train = np.repeat(np.arange(n_faces), n_training_faces)
- target_test = np.repeat(np.arange(n_faces), n_test_faces)
-
- for x in range(n_faces):
- samples = random.sample(range(n_cases), n_training_faces)
- faces_train[x] = [raw_faces[i+n_cases*x] for i in samples]
- faces_test[x] = [raw_faces[i+n_cases*x] for i in range(n_cases) if i not in samples]
-
- faces_train = faces_train.reshape(n_faces*n_training_faces, n_pixels)
- faces_test = faces_test.reshape(n_faces*n_test_faces, n_pixels)
- return faces_train, faces_test, target_train, target_test
-
-def draw_results(args, target_test, target_pred):
- acc_sc = accuracy_score(target_test, target_pred)
- cm = confusion_matrix(target_test, target_pred)
- print('Accuracy: ', acc_sc)
- if (args.conf_mat):
- plt.matshow(cm, cmap='Blues')
- plt.colorbar()
- plt.ylabel('Actual')
- plt.xlabel('Predicted')
- plt.show()
- return
-
-def test_model(M, faces_train, faces_test, target_train, target_test, args):
- raw_faces_train = faces_train
- raw_faces_test = faces_test
-
- explained_variances = ()
-
-
- distances = np.zeros(faces_test.shape[0])
-
- if args.pca or args.pca_r:
- # faces_pca containcts the principial components or the M most variant eigenvectors
- average_face = np.mean(faces_train, axis=0)
- if args.classifyalt:
- deviations_tr = np.ones(n_pixels)
- else:
- deviations_tr = np.std(faces_train, axis=0)
- faces_train = normalise_faces(deviations_tr, average_face, faces_train)
- faces_test = normalise_faces(deviations_tr, average_face, faces_test)
- if (args.pca_r):
- e_vals, e_vecs = LA.eigh(np.dot(faces_train, faces_train.T))
- e_vecs = np.dot(faces_train.T, e_vecs)
- e_vecs = e_vecs/LA.norm(e_vecs, axis = 0)
- else:
- e_vals, e_vecs = LA.eigh(np.cov(faces_train.T))
-
- e_vals = np.flip(e_vals)
- e_vecs = np.fliplr(e_vecs).T
-
- if args.random:
- random_features = random.sample(range(M-args.random, M), args.random)
- for i in range(args.random):
- e_vals[M-i] = e_vals[random_features[i]]
- e_vecs[M-i] = e_vecs[random_features[i]]
-
- e_vals = e_vals[:M]
- e_vecs = e_vecs[:M]
-
- deviations_tr = np.flip(deviations_tr)
- faces_train = np.dot(faces_train, e_vecs.T)
- faces_test = np.dot(faces_test, e_vecs.T)
-
- rec_vecs = np.add(np.tile(average_face,
- (faces_test.shape[0], 1)), np.dot(faces_test, e_vecs) * deviations_tr)
- distances = LA.norm(raw_faces_test - rec_vecs, axis=1);
-
- if args.reconstruct:
- rec_vec = np.add(average_face, np.dot(faces_train[args.reconstruct], e_vecs) * deviations_tr)
- ar = plt.subplot(2, 1, 1)
- ar.imshow(rec_vec.reshape([46,56]).T, cmap = 'gist_gray')
- ar = plt.subplot(2, 1, 2)
- ar.imshow(raw_faces_train[args.reconstruct].reshape([46,56]).T, cmap = 'gist_gray')
- plt.show()
-
- if args.lda:
- if args.pca_r or (args.pca and M > n_training_faces - n_faces):
- lda = LinearDiscriminantAnalysis(n_components=M, solver='svd')
- else:
- lda = LinearDiscriminantAnalysis(n_components=M, store_covariance='True')
-
- faces_train = lda.fit_transform(faces_train, target_train)
- faces_test = lda.transform(faces_test)
- class_means = lda.means_
- e_vals = lda.explained_variance_ratio_
-
- if args.faces:
- if args.lda:
- for i in range(10):
- ax = plt.subplot(2, 5, i + 1)
- ax.imshow(class_means[i].reshape([46,56]).T)
- else:
- for i in range(args.faces):
- ax = plt.subplot(2, args.faces/2, i + 1)
- ax.imshow(e_vecs[i].reshape([46, 56]).T, cmap = 'gist_gray')
- plt.show()
-
- if args.principal:
- e_vals = np.multiply(np.divide(e_vals, np.sum(e_vals)), 100)
- plt.bar(np.arange(M), e_vals[:M])
- plt.ylabel('Varaiance ratio (%)');plt.xlabel('Number')
- plt.show()
-
- if args.grapheigen:
- # Colors for distinct individuals
- cols = ['#{:06x}'.format(randint(0, 0xffffff)) for i in range(n_faces)]
- pltCol = [cols[int(k)] for k in target_train]
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- ax.scatter(faces_train[:, 0], faces_train[:, 1], faces_train[:, 2], marker='o', color=pltCol)
- plt.show()
-
- classifier = KNeighborsClassifier(n_neighbors=args.neighbors)
- classifier.fit(faces_train, target_train)
- target_pred = classifier.predict(faces_test)
- if args.prob:
- targer_prob = classifier.predict_proba(faces_test)
- targer_prob_vec = np.zeros(104)
- for i in range (104):
- j = int(np.floor(i/2))
- targer_prob_vec [i] = targer_prob[i][j]
- avg_targer_prob = np.zeros(n_faces)
- for i in range (n_faces):
- avg_targer_prob[i] = (targer_prob_vec[2*i] + targer_prob_vec[2*i + 1])/2
- plt.bar(range(n_faces), avg_targer_prob)
- plt.show()
-
- return target_pred, distances
-
-def main():
- parser = argparse.ArgumentParser()
- parser.add_argument("-i", "--data", help="Input CSV file", required=True)
- parser.add_argument("-m", "--eigen", help="Number of eigenvalues in model", type=int, default = 10 )
- parser.add_argument("-M", "--reigen", help="Number of eigenvalues in model", type=int)
- parser.add_argument("-e", "--ensemble", help="Number of ensemmbles to use", type=int, default = 0)
- parser.add_argument("-b", "--bagging", help="Number of bags to use", action='store_true')
- parser.add_argument("-R", "--random", help="Number of eigen value to randomise", type=int)
- parser.add_argument("-n", "--neighbors", help="How many neighbors to use", type=int, default = 1)
- parser.add_argument("-f", "--faces", help="Show faces", type=int, default = 0)
- parser.add_argument("-c", "--principal", help="Show principal components", action='store_true')
- parser.add_argument("-s", "--seed", help="Seed to use", type=int, default=0)
- parser.add_argument("-t", "--split", help="Fractoin of data to use for testing", type=float, default=0.3)
- parser.add_argument("-2", "--grapheigen", help="Swow 2D graph of targets versus principal components",
- action='store_true')
- parser.add_argument("-p", "--pca", help="Use PCA", action='store_true')
- parser.add_argument("-l", "--lda", help="Use LDA", action='store_true')
- parser.add_argument("-r", "--reconstruct", help="Use PCA reconstruction, specify face NR", type=int, default=0)
- parser.add_argument("-cm", "--conf_mat", help="Show visual confusion matrix", action='store_true')
- parser.add_argument("-q", "--pca_r", help="Use Reduced PCA", action='store_true')
- parser.add_argument("-pr", "--prob", help="Certainty on each guess", action='store_true')
- parser.add_argument("-alt", "--classifyalt", help="Alternative method ON", action='store_true')
- args = parser.parse_args()
-
- if args.lda and args.classifyalt:
- sys.exit("LDA and Alt PCA can not be performed together")
-
- raw_faces = genfromtxt(args.data, delimiter=',')
- targets = np.repeat(np.arange(n_faces),n_cases)
-
- faces_train, faces_test, target_train, target_test = test_split(n_faces, raw_faces, args.split, args.seed)
-
- if args.ensemble:
- n_training_faces = int(round(n_cases*(1 - args.split)))
- faces_train_ens = np.zeros((args.ensemble, n_faces, n_training_faces, n_pixels))
- for x in range(args.ensemble):
- if args.bagging:
- for k in range(n_faces):
- samples = random.choices(range(n_training_faces), k=n_training_faces)
- faces_train_ens[x][k] = [faces_train[i+n_training_faces*k] for i in samples]
- else:
- faces_train_ens[x] = faces_train.reshape((n_faces, n_training_faces, n_pixels))
-
- faces_train_ens = faces_train_ens.reshape(args.ensemble, n_faces*n_training_faces, n_pixels)
-
- if args.classifyalt:
- faces_train = faces_train.reshape(n_faces, int(faces_train.shape[0]/n_faces), n_pixels)
- target_train = target_train.reshape(n_faces, int(target_train.shape[0]/n_faces))
-
- distances = np.zeros((n_faces, faces_test.shape[0]))
- for i in range(n_faces):
- target_pred, distances[i] = test_model(args.eigen, faces_train[i],
- faces_test, target_train[i], target_test, args)
- target_pred = np.argmin(distances, axis=0)
- elif args.reigen:
- target_pred = np.zeros((args.reigen-args.eigen, target_test.shape[0]))
- accuracy = np.zeros(args.reigen-args.eigen)
- rec_error = np.zeros((args.reigen-args.eigen, target_test.shape[0]))
-
- for M in range(args.eigen, args.reigen):
- start = timer()
- target_pred[M - args.eigen], rec_error[M - args.eigen] = test_model(M, faces_train,
- faces_test, target_train, target_test, args)
- end = timer()
- print("Run with", M, "eigenvalues completed in ", end-start, "seconds")
- print("Memory Used:", psutil.Process(os.getpid()).memory_info().rss)
- accuracy[M - args.eigen] = accuracy_score(target_test, target_pred[M-args.eigen])
- # Plot
- print('Max efficiency of ', max(accuracy), '% for M =', np.argmax(accuracy))
- plt.plot(range(args.eigen, args.reigen), 100*accuracy)
- plt.xlabel('Number of Eigenvectors used (M)')
- plt.ylabel('Recognition Accuracy (%)')
- plt.grid(True)
- plt.show()
- elif args.ensemble:
- rec_error = np.zeros((args.ensemble, n_faces, faces_test.shape[0]))
- target_pred = np.zeros((args.ensemble, target_test.shape[0]))
- for i in range(args.ensemble):
- target_pred[i], rec_error[i] = test_model(args.eigen, faces_train_ens[i],
- faces_test, target_train, target_test, args)
-
- target_pred_comb = np.zeros(target_pred.shape[1])
- target_pred = target_pred.astype(int).T
- if (args.conf_mat):
- cm = confusion_matrix(np.tile(target_test, args.ensemble), target_pred.flatten('F'))
- plt.matshow(cm, cmap='Blues')
- plt.colorbar()
- plt.ylabel('Actual')
- plt.xlabel('Predicted')
- plt.show()
-
- for i in range(target_pred.shape[0]):
- target_pred_comb[i] = np.bincount(target_pred[i]).argmax()
- target_pred = target_pred_comb
- else:
- M = args.eigen
- start = timer()
- target_pred, distances = test_model(M, faces_train, faces_test, target_train, target_test, args)
- end = timer()
-
- draw_results(args, target_test, target_pred)
-
-if __name__ == "__main__":
- main()