aboutsummaryrefslogtreecommitdiff
path: root/evaluate.py
blob: 0f8fe48fbab69ffb5eec2a5ec28ea3bd829e35ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
# Author: Vasil Zlatanov, Nunzio Pucci
# EE4 Pattern Recognition coursework
#
# usage: evaluate.py [-h] [-t] [-c] [-k] [-m] [-e] [-r] [-a RERANKA]
#               [-b RERANKB] [-l RERANKL] [-n NEIGHBORS] [-v]
#               [-s SHOWRANK] [-1] [-M MULTRANK] [-C] [DATA]
#               [-K KMEAN] [-A] [-P PCA]

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import sys
import random
import os
import json
import scipy.io
from random import randint
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestNeighbors
from sklearn.neighbors import DistanceMetric
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
import argparse
import numpy as np
from numpy import genfromtxt
from numpy import linalg as LA
from timeit import default_timer as timer
from scipy.spatial.distance import cdist
sys.path.append('lib')
from rerank import re_ranking
from kmean import create_kmean_clusters
import logging
from logging import debug

parser = argparse.ArgumentParser()
parser.add_argument("-t", "--train", help="Use train data instead of query and gallery", action='store_true')
parser.add_argument("-c", "--conf_mat", help="Show visual confusion matrix", action='store_true')
parser.add_argument("-k", "--kmean_alt", help="Perform clustering with generalized labels(not actual kmean)", action='store_true')
parser.add_argument("-m", "--mahalanobis", help="Perform Mahalanobis Distance metric", action='store_true')
parser.add_argument("-e", "--euclidean", help="Use standard euclidean distance", action='store_true')
parser.add_argument("-r", "--rerank", help="Use k-reciprocal rernaking", action='store_true')
parser.add_argument("-a", "--reranka", help="Parameter k1 for rerank", type=int, default = 9)
parser.add_argument("-b", "--rerankb", help="Parameter k2 for rerank", type=int, default = 3)
parser.add_argument("-l", "--rerankl", help="Parameter lambda fo rerank", type=float, default = 0.3)
parser.add_argument("-n", "--neighbors", help="Use customized ranklist size NEIGHBORS", type=int, default = 1)
parser.add_argument("-v", "--verbose", help="Use verbose output", action='store_true')
parser.add_argument("-s", "--showrank", help="Save ranklist pics id in a txt file for first SHOWRANK queries", type=int, default = 0)
parser.add_argument("-1", "--normalise", help="Normalise features", action='store_true')
parser.add_argument("-M", "--multrank", help="Run for different ranklist sizes equal to MULTRANK", type=int, default=1)
parser.add_argument("-C", "--comparison", help="Compare baseline and improved metric", action='store_true')
parser.add_argument("--data", help="Folder containing data", default='data')
parser.add_argument("-K", "--kmean", help="Perform Kmean clustering, KMEAN number of clusters", type=int, default=0)
parser.add_argument("-A", "--mAP", help="Display Mean Average Precision", action='store_true')
parser.add_argument("-P", "--PCA", help="Perform pca with PCA eigenvectors", type=int, default=0)

args = parser.parse_args()

if args.verbose:
    logging.basicConfig(level=logging.DEBUG)

def draw_results(test_label, pred_label):
    acc_sc = accuracy_score(test_label, pred_label)
    cm = confusion_matrix(test_label, pred_label)
    print('Accuracy: ', acc_sc)
    if (args.conf_mat):
        plt.matshow(cm, cmap='Blues')
        plt.colorbar()
        plt.ylabel('Actual')
        plt.xlabel('Predicted')
        plt.show()
    return acc_sc

def test_model(gallery_data, probe_data, gallery_label, probe_label, gallery_cam, probe_cam, showfiles_train, showfiles_test, train_model, args):

    debug("probe shape: %s", probe_data.shape)
    debug("gallery shape: %s", gallery_data.shape)

    if args.rerank:
        distances = re_ranking(probe_data, gallery_data, 
                               args.reranka, args.rerankb, args.rerankl, 
                               MemorySave = False, Minibatch = 2000)
    else:
        if args.mahalanobis:
            cov_inv = np.linalg.inv(np.cov(train_model.T))
            distances = np.zeros((probe_data.shape[0], gallery_data.shape[0]))
            for i in range(int(probe_data.shape[0]/10)):
                debug("Comupting from", i*10, "to", (i+1)*10-1)
                distances[i*10:(i+1)*10-1] = cdist(probe_data[i*10:(i+1)*10-1], gallery_data, 'mahalanobis', VI=cov_inv)
        else:
            distances = cdist(probe_data, gallery_data, 'euclidean')

    ranklist = np.argsort(distances, axis=1)

    test_table = np.arange(1, args.multrank+1)
    target_pred = np.zeros((args.multrank, ranklist.shape[0]))
    nsize = args.neighbors
    if (args.multrank != 1):
        nsize = test_table[args.multrank-1]
    nneighbors = np.zeros((ranklist.shape[0],nsize))
    nnshowrank = (np.zeros((ranklist.shape[0],nsize))).astype(object)

    for i in range(args.multrank):
        if args.multrank!= 1:
            args.neighbors = test_table[i]
        for probe_idx in range(probe_data.shape[0]):
            row = ranklist[probe_idx]
            n = 0
            q = 0
            while (q < args.neighbors):
                while (probe_cam[probe_idx] == gallery_cam[row[n]] and
                  probe_label[probe_idx] == gallery_label[row[n]]):
                    n += 1
                nneighbors[probe_idx][q] = gallery_label[row[n]]
                nnshowrank[probe_idx][q] = showfiles_train[row[n]]
                q += 1
                n += 1

            if (args.neighbors) and (probe_label[probe_idx] in nneighbors[probe_idx]):
                target_pred[i][probe_idx] = probe_label[probe_idx]
            else:
                target_pred[i][probe_idx] = nneighbors[probe_idx][0]


        if (args.showrank):
            with open("ranklist.txt", "w") as text_file:
                text_file.write(np.array2string(nnshowrank[:args.showrank]))
            with open("query.txt", "w") as text_file:
                text_file.write(np.array2string(showfiles_test[:args.showrank]))
        
        if args.mAP:
            precision = np.zeros((probe_label.shape[0], args.neighbors))
            recall = np.zeros((probe_label.shape[0], args.neighbors))
            mAP = np.zeros(probe_label.shape[0])
            max_level_precision = np.zeros((probe_label.shape[0],11))
            
            for i in range(probe_label.shape[0]):
                truth_count=0
                false_count=0
                for j in range(args.neighbors):
                    if probe_label[i] == nneighbors[i][j]:
                        truth_count+=1
                        precision[i][j] = truth_count/(j+1)
                    else:
                        false_count+=1
                        precision[i][j]= 1 - false_count/(j+1)
                if truth_count!=0:
                    recall_step = 1/truth_count
                    for j in range(args.neighbors):
                        if probe_label[i] == nneighbors[i][j]:
                            recall[i][j:] += recall_step
                else:
                    recall[i][:] = 1
            for i in range(probe_label.shape[0]):
                for j in range(11):
                    max_level_precision[i][j] = np.max(precision[i][np.where(recall[i]>=(j/10))])
            for i in range(probe_label.shape[0]):
                mAP[i] = sum(max_level_precision[i])/11
            print('mAP:',np.mean(mAP))
                    
    return target_pred

def main():
    logging.debug("Verbose mode is on")
    mat = scipy.io.loadmat(os.path.join(args.data,'cuhk03_new_protocol_config_labeled.mat'))
    camId = mat['camId']
    filelist = mat['filelist']
    labels = mat['labels']
    gallery_idx = mat['gallery_idx'] - 1
    query_idx = mat['query_idx'] - 1
    train_idx = mat['train_idx'] - 1
    with open(os.path.join(args.data,'feature_data.json'), 'r') as read_file:
        feature_vectors = np.array(json.load(read_file))
    
    if args.train:
        cam = camId[train_idx]
        cam = cam.reshape((cam.shape[0],1))
        labs = labels[train_idx].reshape((labels[train_idx].shape[0],1))
        tt = np.hstack((train_idx, cam)) 
        train, test, train_label, test_label = train_test_split(tt, labs, test_size=0.3, random_state=0)
        del labs
        del cam
        train_data = feature_vectors[train[:,0]]
        test_data = feature_vectors[test[:,0]]
        train_cam = train[:,1]
        test_cam = test[:,1]
        showfiles_train = filelist[train[:,0]]
        showfiles_test = filelist[train[:,0]]
        del train
        del test 
        del tt
    else:
        query_idx = query_idx.reshape(query_idx.shape[0])
        gallery_idx = gallery_idx.reshape(gallery_idx.shape[0])
        camId = camId.reshape(camId.shape[0])

        showfiles_train = filelist[gallery_idx]
        showfiles_test = filelist[query_idx]
        train_data = feature_vectors[gallery_idx]
        test_data = feature_vectors[query_idx]
        train_label = labels[gallery_idx]
        test_label = labels[query_idx]
        train_cam = camId[gallery_idx]
        test_cam = camId[query_idx]
    
    train_idx = train_idx.reshape(train_idx.shape[0])
    train_model = feature_vectors[train_idx]

    if(args.PCA):
        pca=PCA(n_components=args.PCA) #Data variance @100 is 94%
        train_model=pca.fit_transform(train_model)
        train_data=pca.transform(train_data)
        test_data=pca.transform(test_data)

    accuracy = np.zeros((2, args.multrank))
    test_table = np.arange(1, args.multrank+1)

    if (args.normalise):
        debug("Normalising data")
        train_data = np.divide(train_data,LA.norm(train_data,axis=0))
        test_data = np.divide(test_data, LA.norm(test_data,axis=0))
    if(args.kmean_alt):
        debug("Using Kmeans")
        train_data, train_label, train_cam = create_kmean_clusters(feature_vectors, labels, gallery_idx, camId)
        
    if args.kmean:
        kmeans = KMeans(n_clusters=args.kmean, random_state=0).fit(train_data)
        neigh = NearestNeighbors(n_neighbors=1)
        neigh.fit(kmeans.cluster_centers_)
        neighbors = neigh.kneighbors(test_data, return_distance=False)
        target_pred = np.zeros(test_data.shape[0])

        for i in range(test_data.shape[0]):
            td = test_data[i].reshape(1,test_data.shape[1])
            tc = np.array([test_cam[i]])
            tl = np.array([test_label[i]])
            target_pred[i] = (test_model(train_data[np.where(kmeans.labels_==neighbors[i])], td, train_label[np.where(kmeans.labels_==neighbors[i])], tl, train_cam[np.where(kmeans.labels_==neighbors[i])], tc, showfiles_train[np.where(kmeans.labels_==neighbors[i])], showfiles_test[i], train_model, args))
         
        accuracy[0] = draw_results(test_label, target_pred)
    else:
        for q in range(args.comparison+1):
            target_pred = test_model(train_data, test_data, train_label, test_label, train_cam, test_cam, showfiles_train, showfiles_test, train_model, args)
            for i in range(args.multrank):
                accuracy[q][i] = draw_results(test_label, target_pred[i])
            args.rerank = True
            args.neighbors = 1

    if(args.multrank != 1):
        plt.plot(test_table[:(args.multrank)], 100*accuracy[0])
        if(args.comparison):
            plt.plot(test_table[:(args.multrank)], 100*accuracy[1])
            plt.legend(['Baseline NN', 'NN+Reranking'], loc='upper left')
        plt.xlabel('Top k')
        plt.ylabel('Identification Accuracy (%)')
        plt.grid(True)
        plt.show()


if __name__ == "__main__":
    main()