1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
#!/usr/bin/env python
# Author: Vasil Zlatanov, Nunzio Pucci
# EE4 Pattern Recognition coursework
#
# usage: part2.py [-h] [-t] [-cm] [-km] [-ma] [-e] [-r] [-ka RERANKA]
# [-kb RERANKB] [-v]
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import sys
import random
import os
import json
import scipy.io
from random import randint
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestNeighbors
from sklearn.neighbors import DistanceMetric
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
import argparse
import numpy as np
from numpy import genfromtxt
from numpy import linalg as LA
from timeit import default_timer as timer
from scipy.spatial.distance import cdist
sys.path.append('lib')
from rerank import re_ranking
from kmean import create_kmean_clusters
import logging
from logging import debug
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--train", help="Use train data instead of query and gallery", action='store_true')
parser.add_argument("-c", "--conf_mat", help="Show visual confusion matrix", action='store_true')
parser.add_argument("-k", "--kmean_alt", help="Perform clustering with generalized labels(not actual kmean)", action='store_true', default=0)
parser.add_argument("-m", "--mahalanobis", help="Perform Mahalanobis Distance metric", action='store_true', default=0)
parser.add_argument("-e", "--euclidean", help="Use standard euclidean distance", action='store_true', default=0)
parser.add_argument("-r", "--rerank", help="Use k-reciprocal rernaking", action='store_true')
parser.add_argument("-p", "--reranka", help="Parameter k1 for Rerank -p '$k1val' -ARGUMENT REQUIRED, default=9-", type=int, default = 9)
parser.add_argument("-q", "--rerankb", help="Parameter k2 for rerank -q '$k2val' -ARGUMENT REQUIRED, default=3-", type=int, default = 3)
parser.add_argument("-l", "--rerankl", help="Coefficient to combine distances(lambda) -l '$lambdaval' -ARGUMENT REQUIRED, default=0.3-", type=float, default = 0.3)
parser.add_argument("-n", "--neighbors", help="Use customized ranklist size -n 'size' -ARGUMENT REQUIRED, default=1-", type=int, default = 1)
parser.add_argument("-v", "--verbose", help="Use verbose output", action='store_true')
parser.add_argument("-s", "--showrank", help="Save ranklist pics id in a txt file. Number of ranklists saved specified as -s '$number' -ARGUMENT REQUIRED, default=0-", type=int, default = 0)
parser.add_argument("-1", "--normalise", help="Normalise features", action='store_true', default=0)
parser.add_argument("-M", "--multrank", help="Run for different ranklist sizes equal to M -ARGUMENT REQUIRED, default=1-", type=int, default=1)
parser.add_argument("-C", "--comparison", help="Set to 2 to obtain a comparison of baseline and improved metric -ARGUMENT REQUIRED, default=1-", type=int, default=1)
parser.add_argument("--data", help="You can either put the data in a folder called 'data', or specify the location with --data 'path' -ARGUMENT REQUIRED, default='data'-", default='data')
parser.add_argument("-K", "--kmean", help="Perform Kmean clustering of size specified through -K '$size' -ARGUMENT REQUIRED, default=0-", type=int, default=0)
parser.add_argument("-P", "--mAP", help="Display Mean Average Precision for ranklist of size -n '$size'", action='store_true')
parser.add_argument("-2", "--PCA", help="Use PCA with -2 '$n_components' -ARGUMENT REQUIRED, default=0-", type=int, default=0)
args = parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
def draw_results(test_label, pred_label):
acc_sc = accuracy_score(test_label, pred_label)
cm = confusion_matrix(test_label, pred_label)
print('Accuracy: ', acc_sc)
if (args.conf_mat):
plt.matshow(cm, cmap='Blues')
plt.colorbar()
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()
return acc_sc
def test_model(gallery_data, probe_data, gallery_label, probe_label, gallery_cam, probe_cam, showfiles_train, showfiles_test, args):
debug("probe shape: %s", probe_data.shape)
debug("gallery shape: %s", gallery_data.shape)
if args.rerank:
distances = re_ranking(probe_data, gallery_data,
args.reranka, args.rerankb, args.rerankl,
MemorySave = False, Minibatch = 2000)
else:
if args.mahalanobis:
# metric = 'jaccard' is also valid
cov_inv = np.linalg.inv(np.cov(gallery_data.T))
distances = np.zeros((probe_data.shape[0], gallery_data.shape[0]))
for i in range(int(probe_data.shape[0]/10)):
print("Comupting from", i*10, "to", (i+1)*10-1)
distances[i*10:(i+1)*10-1] = cdist(probe_data[i*10:(i+1)*10-1], gallery_data, 'mahalanobis', VI=cov_inv)
else:
distances = cdist(probe_data, gallery_data, 'euclidean')
ranklist = np.argsort(distances, axis=1)
test_table = np.arange(1, args.multrank+1)
target_pred = np.zeros((args.multrank, ranklist.shape[0]))
nsize = args.neighbors
if (args.multrank != 1):
nsize = test_table[args.multrank-1]
nneighbors = np.zeros((ranklist.shape[0],nsize))
nnshowrank = (np.zeros((ranklist.shape[0],nsize))).astype(object)
for i in range(args.multrank):
if args.multrank!= 1:
args.neighbors = test_table[i]
for probe_idx in range(probe_data.shape[0]):
row = ranklist[probe_idx]
n = 0
q = 0
while (q < args.neighbors):
while (probe_cam[probe_idx] == gallery_cam[row[n]] and
probe_label[probe_idx] == gallery_label[row[n]]):
n += 1
nneighbors[probe_idx][q] = gallery_label[row[n]]
nnshowrank[probe_idx][q] = showfiles_train[row[n]] #
q += 1
n += 1
if (args.neighbors) and (probe_label[probe_idx] in nneighbors[probe_idx]):
target_pred[i][probe_idx] = probe_label[probe_idx]
else:
target_pred[i][probe_idx] = nneighbors[probe_idx][0]
if (args.showrank):
with open("ranklist.txt", "w") as text_file:
text_file.write(np.array2string(nnshowrank[:args.showrank]))
with open("query.txt", "w") as text_file:
text_file.write(np.array2string(showfiles_test[:args.showrank]))
if args.mAP:
precision = np.zeros((probe_label.shape[0], args.neighbors))
recall = np.zeros((probe_label.shape[0], args.neighbors))
mAP = np.zeros(probe_label.shape[0])
max_level_precision = np.zeros((probe_label.shape[0],11))
for i in range(probe_label.shape[0]):
truth_count=0
false_count=0
for j in range(args.neighbors):
if probe_label[i] == nneighbors[i][j]:
truth_count+=1
precision[i][j] = truth_count/(j+1)
else:
false_count+=1
precision[i][j]= 1 - false_count/(j+1)
if truth_count!=0:
recall_step = 1/truth_count
for j in range(args.neighbors):
if probe_label[i] == nneighbors[i][j]:
recall[i][j:] += recall_step
else:
recall[i][:] = 1
for i in range(probe_label.shape[0]):
for j in range(11):
max_level_precision[i][j] = np.max(precision[i][np.where(recall[i]>=(j/10))])
#print(mAP[i])
for i in range(probe_label.shape[0]):
mAP[i] = sum(max_level_precision[i])/11
#mAP[i] = sum(precision[i])/args.neighbors
print('mAP:',np.mean(mAP))
return np.mean(mAP)
return target_pred
def eval(camId, filelist, labels, gallery_idx, train_idx, feature_vectors, args):
if args.train:
cam = camId[train_idx]
cam = cam.reshape((cam.shape[0],1))
labs = labels[train_idx].reshape((labels[train_idx].shape[0],1))
tt = np.hstack((train_idx, cam))
train, test, train_label, test_label = train_test_split(tt, labs, test_size=0.3, random_state=0)
#to make it smaller we do a double split
del labs
del cam
train_data = feature_vectors[train[:,0]]
test_data = feature_vectors[test[:,0]]
train_cam = train[:,1]
test_cam = test[:,1]
showfiles_train = filelist[train[:,0]]
showfiles_test = filelist[train[:,0]]
del train
del test
del tt
else:
query_idx = query_idx.reshape(query_idx.shape[0])
gallery_idx = gallery_idx.reshape(gallery_idx.shape[0])
camId = camId.reshape(camId.shape[0])
showfiles_train = filelist[gallery_idx]
showfiles_test = filelist[query_idx]
train_data = feature_vectors[gallery_idx]
test_data = feature_vectors[query_idx]
train_label = labels[gallery_idx]
test_label = labels[query_idx]
train_cam = camId[gallery_idx]
test_cam = camId[query_idx]
train_idx = train_idx.reshape(train_idx.shape[0])
train_model = feature_vectors[train_idx]
if(args.PCA):
pca=PCA(n_components=args.PCA) #Data variance @100 is 94%
train_model=pca.fit_transform(train_model)
train_data=pca.transform(train_data)
test_data=pca.transform(test_data)
accuracy = np.zeros((2, args.multrank))
test_table = np.arange(1, args.multrank+1)
if (args.normalise):
debug("Normalising data")
train_data = np.divide(train_data,LA.norm(train_data,axis=0))
test_data = np.divide(test_data, LA.norm(test_data,axis=0))
if(args.kmean_alt):
debug("Using Kmeans")
train_data, train_label, train_cam = create_kmean_clusters(feature_vectors, labels,gallery_idx,camId)
if args.kmean:
kmeans = KMeans(n_clusters=args.kmean, random_state=0).fit(train_data)
neigh = NearestNeighbors(n_neighbors=1)
neigh.fit(kmeans.cluster_centers_)
neighbors = neigh.kneighbors(test_data, return_distance=False)
target_pred = np.zeros(test_data.shape[0])
for i in range(test_data.shape[0]):
td = test_data[i].reshape(1,test_data.shape[1])
tc = np.array([test_cam[i]])
tl = np.array([test_label[i]])
target_pred[i] = (test_model(train_data[np.where(kmeans.labels_==neighbors[i])], td, train_label[np.where(kmeans.labels_==neighbors[i])], tl, train_cam[np.where(kmeans.labels_==neighbors[i])], tc, showfiles_train[np.where(kmeans.labels_==neighbors[i])], showfiles_test[i], args))
accuracy[0] = draw_results(test_label, target_pred)
else:
for q in range(args.comparison):
if args.mAP:
return test_model(train_data, test_data, train_label, test_label, train_cam, test_cam, showfiles_train, showfiles_test, args)
target_pred = test_model(train_data, test_data, train_label, test_label, train_cam, test_cam, showfiles_train, showfiles_test, args)
for i in range(args.multrank):
return draw_results(test_label, target_pred[i])
args.rerank = True
args.neighbors = 1
if(args.multrank != 1):
plt.plot(test_table[:(args.multrank)], 100*accuracy[0])
if(args.comparison!=1):
plt.plot(test_table[:(args.multrank)], 100*accuracy[1])
plt.legend(['Baseline NN', 'NN+Reranking'], loc='upper left')
plt.xlabel('Top k')
plt.ylabel('Identification Accuracy (%)')
plt.grid(True)
plt.show()
def kopt(camId, filelist, labels, gallery_idx, train_idx, feature_vectors, args):
axis = 0
search = 0
steps = 0
vertical = True
neg = False
outofaxis = False
start = np.array([1,1])
if args.mAP:
args.neighbors = 10
args.PCA = 50
args.train = True
args.rerank = True
args.reranka = 1
args.rerankb = 1
opt = np.array([1,1])
checktab = np.zeros((100,100))
checktab[1][1]=1
max_acc = eval(camId, filelist, labels, gallery_idx, train_idx, feature_vectors, args)
print('origin')
print('vertical')
while steps<3:
steps+=1
while axis<4:
axis+=1
p = start[0]
q = start[1]
while search <5:
search+=1
if vertical:
if neg:
p = start[0] - 2*search
if p < 1:
p = 1
search = 5
outofaxis = True
else:
p = search*2 + start[0]
args.reranka = p
if not outofaxis:
if checktab[p][q] == 0:
checktab[p][q] = 1
print('p:',p,' q:',q)
acc = eval(camId, filelist, labels, gallery_idx, train_idx, feature_vectors, args)
if acc > max_acc:
print('new p:',p, ' for accuracy:', acc)
max_acc=acc
opt[0] = p
start[0] = p
axis=0
steps=0
search=6
else:
if neg:
q = start[1] - 2*search
if q < 1:
q = 1
search = 5
outofaxis = True
else:
q = search*2 + start[1]
args.rerankb = q
if not outofaxis:
if checktab[p][q] == 0:
checktab[p][q]=1
print('p:',p,' q:',q)
acc = eval(camId, filelist, labels, gallery_idx, train_idx, feature_vectors, args)
if acc > max_acc:
print('new q:',q, ' for accuracy:', acc)
max_acc=acc
opt[1] = q
start[1] = q
axis=0
steps=0
search=6
if search==5:
outofaxis = False
vertical = not vertical
print('vertical:',vertical)
search=0
if axis==2 or axis == 4:
neg = not neg
axis=0
start[0]+=2
start[1]+=2
p=start[0]
q=start[1]
args.reranka = start[0]
args.rerankb = start[1]
print('p:',p,' q:',q)
acc = eval(camId, filelist, labels, gallery_idx, train_idx, feature_vectors, args)
if acc > max_acc:
print('new p:',p,'new q:',q, ' for accuracy:', acc)
max_acc=acc
opt[0] = start[0]
opt[1] = start[1]
steps=0
vertical=True
print('Maximum Accuracy:',max_acc,' found at p:',opt[0],'|q:',opt[1])
return max_acc, opt
def main():
mat = scipy.io.loadmat(os.path.join(args.data,'cuhk03_new_protocol_config_labeled.mat'))
camId = mat['camId']
filelist = mat['filelist']
labels = mat['labels']
gallery_idx = mat['gallery_idx'] - 1
query_idx = mat['query_idx'] - 1
train_idx = mat['train_idx'] - 1
with open(os.path.join(args.data,'feature_data.json'), 'r') as read_file:
feature_vectors = np.array(json.load(read_file))
l=0
max_acc = np.zeros(11)
opt = np.zeros((11,2))
while l < 11:
args.rerankl = l/10
print('testing for lambda:',args.rerankl)
max_acc[l], opt[l] = kopt(camId, filelist, labels, gallery_idx, train_idx, feature_vectors, args)
l +=1
print('Max accuracy:',np.max(max_acc),' at p:',opt[np.argmax(max_acc)][0], '| q:',opt[np.argmax(max_acc)][1],'| lambda:',np.argmax(max_acc)/10)
if __name__ == "__main__":
main()
|