1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
#!/usr/bin/env python
# Author: Vasil Zlatanov, Nunzio Pucci
# EE4 Pattern Recognition coursework
#
# usage: train.py [-h] -i DATA [-m EIGEN] [-M REIGEN] [-e ENSEMBLE] [-b]
# [-R RANDOM] [-n NEIGHBORS] [-f FACES] [-c] [-s SEED]
# [-t SPLIT] [-2] [-p] [-l] [-r RECONSTRUCT] [-cm] [-q] [-pr]
# [-alt]
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
import imp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import sys
import random
import os
import psutil
from random import randint
from sklearn.neighbors import KNeighborsClassifier
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
import argparse
import numpy as np
from numpy import genfromtxt
from numpy import linalg as LA
from timeit import default_timer as timer
n_faces = 52
n_cases = 10
n_pixels = 2576
# subtract the normal face from each row of the face matrix
def normalise_faces(deviations_tr, average_face, faces):
faces = np.subtract(faces, np.tile(average_face, (faces.shape[0],1)))
return np.divide(faces, deviations_tr)
# Split data into training and testing sets
def test_split(n_faces, raw_faces, split, seed):
random.seed(seed)
raw_faces_split = np.split(raw_faces,n_cases)
n_training_faces = int(round(n_cases*(1 - split)))
n_test_faces = n_cases - n_training_faces
faces_train = np.zeros((n_faces, n_training_faces, n_pixels))
faces_test = np.zeros((n_faces, n_test_faces, n_pixels))
target_train = np.repeat(np.arange(n_faces), n_training_faces)
target_test = np.repeat(np.arange(n_faces), n_test_faces)
for x in range(n_faces):
samples = random.sample(range(n_cases), n_training_faces)
faces_train[x] = [raw_faces[i+n_cases*x] for i in samples]
faces_test[x] = [raw_faces[i+n_cases*x] for i in range(n_cases) if i not in samples]
faces_train = faces_train.reshape(n_faces*n_training_faces, n_pixels)
faces_test = faces_test.reshape(n_faces*n_test_faces, n_pixels)
return faces_train, faces_test, target_train, target_test
def draw_results(args, target_test, target_pred):
acc_sc = accuracy_score(target_test, target_pred)
cm = confusion_matrix(target_test, target_pred)
print('Accuracy: ', acc_sc)
if (args.conf_mat):
plt.matshow(cm, cmap='Blues')
plt.colorbar()
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()
return
def test_model(M, faces_train, faces_test, target_train, target_test, args):
raw_faces_train = faces_train
raw_faces_test = faces_test
explained_variances = ()
distances = np.zeros(faces_test.shape[0])
if args.pca or args.pca_r:
# faces_pca containcts the principial components or the M most variant eigenvectors
average_face = np.mean(faces_train, axis=0)
#PLOTTING MEAN FACE
#plt.imshow(average_face.reshape([46,56]).T, cmap = 'gist_gray')
plt.show()
if args.classifyalt:
deviations_tr = np.ones(n_pixels)
else:
deviations_tr = np.std(faces_train, axis=0)
# deviations_tst = np.std(faces_test, axis=0)
faces_train = normalise_faces(deviations_tr, average_face, faces_train)
faces_test = normalise_faces(deviations_tr, average_face, faces_test)
if (args.pca_r):
e_vals, e_vecs = LA.eigh(np.dot(faces_train, faces_train.T))
e_vecs = np.dot(faces_train.T, e_vecs)
e_vecs = e_vecs/LA.norm(e_vecs, axis = 0)
else:
e_vals, e_vecs = LA.eigh(np.cov(faces_train.T))
# e_vecs = normalise_faces(np.mean(e_vecs,axis=0), e_vecs)
#PLOTTING NON-ZERO EVALS
#if args.pca:
# plt.semilogy(range(2576), np.absolute(416*np.flip(e_vals)))
# plt.show()
e_vals = np.flip(e_vals)
e_vecs = np.fliplr(e_vecs).T
if args.random:
random_features = random.sample(range(M-args.random, M), args.random)
for i in range(args.random):
e_vals[M-i] = e_vals[random_features[i]]
e_vecs[M-i] = e_vecs[random_features[i]]
e_vals = e_vals[:M]
e_vecs = e_vecs[:M]
deviations_tr = np.flip(deviations_tr)
# deviations_tst = np.flip(deviations_tst)
faces_train = np.dot(faces_train, e_vecs.T)
faces_test = np.dot(faces_test, e_vecs.T)
rec_vecs = np.add(np.tile(average_face,
(faces_test.shape[0], 1)), np.dot(faces_test, e_vecs) * deviations_tr)
distances = LA.norm(raw_faces_test - rec_vecs, axis=1);
if args.reconstruct:
rec_vec = np.add(average_face, np.dot(faces_train[args.reconstruct], e_vecs) * deviations_tr)
ar = plt.subplot(2, 1, 1)
ar.imshow(rec_vec.reshape([46,56]).T, cmap = 'gist_gray')
ar = plt.subplot(2, 1, 2)
ar.imshow(raw_faces_train[args.reconstruct].reshape([46,56]).T, cmap = 'gist_gray')
plt.show()
if args.lda:
if args.pca_r or (args.pca and M > n_training_faces - n_faces):
lda = LinearDiscriminantAnalysis(n_components=M, solver='svd')
else:
lda = LinearDiscriminantAnalysis(n_components=M, store_covariance='True')
faces_train = lda.fit_transform(faces_train, target_train)
faces_test = lda.transform(faces_test)
class_means = lda.means_
e_vals = lda.explained_variance_ratio_
# scatter_matrix = lda.covariance_; print("Rank of scatter:", LA.matrix_rank(scatter_matrix))
if args.faces:
if args.lda:
for i in range(10):
ax = plt.subplot(2, 5, i + 1)
ax.imshow(class_means[i].reshape([46,56]).T)
else:
for i in range(args.faces):
ax = plt.subplot(2, args.faces/2, i + 1)
ax.imshow(e_vecs[i].reshape([46, 56]).T, cmap = 'gist_gray')
plt.show()
if args.principal:
e_vals = np.multiply(np.divide(e_vals, np.sum(e_vals)), 100)
plt.bar(np.arange(M), e_vals[:M])
plt.ylabel('Varaiance ratio (%)');plt.xlabel('Number')
plt.show()
if args.grapheigen:
#graph_eigen()
# Colors for distinct individuals
cols = ['#{:06x}'.format(randint(0, 0xffffff)) for i in range(n_faces)]
pltCol = [cols[int(k)] for k in target_train]
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(faces_train[:, 0], faces_train[:, 1], faces_train[:, 2], marker='o', color=pltCol)
plt.show()
classifier = KNeighborsClassifier(n_neighbors=args.neighbors)
classifier.fit(faces_train, target_train)
target_pred = classifier.predict(faces_test)
if args.prob:
targer_prob = classifier.predict_proba(faces_test)
targer_prob_vec = np.zeros(104)
for i in range (104):
j = int(np.floor(i/2))
targer_prob_vec [i] = targer_prob[i][j]
avg_targer_prob = np.zeros(n_faces)
for i in range (n_faces):
avg_targer_prob[i] = (targer_prob_vec[2*i] + targer_prob_vec[2*i + 1])/2
#WE CAN FIX THIS BY RESHAPING TARGER_PROB_VEC AND TAKING THE MEAN ON THE RIGHT AXIS
plt.bar(range(n_faces), avg_targer_prob)
plt.show()
#Better n_neighbors = 2
return target_pred, distances
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--data", help="Input CSV file", required=True)
parser.add_argument("-m", "--eigen", help="Number of eigenvalues in model", type=int, default = 10 )
parser.add_argument("-M", "--reigen", help="Number of eigenvalues in model", type=int)
parser.add_argument("-e", "--ensemble", help="Number of ensemmbles to use", type=int, default = 0)
parser.add_argument("-b", "--bagging", help="Number of bags to use", action='store_true')
parser.add_argument("-R", "--random", help="Number of eigen value to randomise", type=int)
parser.add_argument("-n", "--neighbors", help="How many neighbors to use", type=int, default = 1)
##USING STANDARD 1 FOR NN ACCURACY
parser.add_argument("-f", "--faces", help="Show faces", type=int, default = 0)
parser.add_argument("-c", "--principal", help="Show principal components", action='store_true')
parser.add_argument("-s", "--seed", help="Seed to use", type=int, default=0)
parser.add_argument("-t", "--split", help="Fractoin of data to use for testing", type=float, default=0.3)
### best split for lda = 22
### best plit for pca = 20
parser.add_argument("-2", "--grapheigen", help="Swow 2D graph of targets versus principal components",
action='store_true')
parser.add_argument("-p", "--pca", help="Use PCA", action='store_true')
parser.add_argument("-l", "--lda", help="Use LDA", action='store_true')
parser.add_argument("-r", "--reconstruct", help="Use PCA reconstruction, specify face NR", type=int, default=0)
parser.add_argument("-cm", "--conf_mat", help="Show visual confusion matrix", action='store_true')
parser.add_argument("-q", "--pca_r", help="Use Reduced PCA", action='store_true')
parser.add_argument("-pr", "--prob", help="Certainty on each guess", action='store_true')
parser.add_argument("-alt", "--classifyalt", help="Alternative method ON", action='store_true')
args = parser.parse_args()
if args.lda and args.classifyalt:
sys.exit("LDA and Alt PCA can not be performed together")
raw_faces = genfromtxt(args.data, delimiter=',')
targets = np.repeat(np.arange(n_faces),n_cases)
faces_train, faces_test, target_train, target_test = test_split(n_faces, raw_faces, args.split, args.seed)
if args.ensemble:
n_training_faces = int(round(n_cases*(1 - args.split)))
faces_train_ens = np.zeros((args.ensemble, n_faces, n_training_faces, n_pixels))
for x in range(args.ensemble):
if args.bagging:
for k in range(n_faces):
samples = random.choices(range(n_training_faces), k=n_training_faces)
faces_train_ens[x][k] = [faces_train[i+n_training_faces*k] for i in samples]
else:
faces_train_ens[x] = faces_train.reshape((n_faces, n_training_faces, n_pixels))
faces_train_ens = faces_train_ens.reshape(args.ensemble, n_faces*n_training_faces, n_pixels)
if args.classifyalt:
faces_train = faces_train.reshape(n_faces, int(faces_train.shape[0]/n_faces), n_pixels)
target_train = target_train.reshape(n_faces, int(target_train.shape[0]/n_faces))
distances = np.zeros((n_faces, faces_test.shape[0]))
for i in range(n_faces):
target_pred, distances[i] = test_model(args.eigen, faces_train[i],
faces_test, target_train[i], target_test, args)
target_pred = np.argmin(distances, axis=0)
elif args.reigen:
target_pred = np.zeros((args.reigen-args.eigen, target_test.shape[0]))
accuracy = np.zeros(args.reigen-args.eigen)
rec_error = np.zeros((args.reigen-args.eigen, target_test.shape[0]))
for M in range(args.eigen, args.reigen):
start = timer()
target_pred[M - args.eigen], rec_error[M - args.eigen] = test_model(M, faces_train,
faces_test, target_train, target_test, args)
end = timer()
print("Run with", M, "eigenvalues completed in ", end-start, "seconds")
print("Memory Used:", psutil.Process(os.getpid()).memory_info().rss)
accuracy[M - args.eigen] = accuracy_score(target_test, target_pred[M-args.eigen])
# Plot
print('Max efficiency of ', max(accuracy), '% for M =', np.argmax(accuracy))
plt.plot(range(args.eigen, args.reigen), 100*accuracy)
plt.xlabel('Number of Eigenvectors used (M)')
plt.ylabel('Recognition Accuracy (%)')
plt.grid(True)
plt.show()
elif args.ensemble:
rec_error = np.zeros((args.ensemble, n_faces, faces_test.shape[0]))
target_pred = np.zeros((args.ensemble, target_test.shape[0]))
for i in range(args.ensemble):
target_pred[i], rec_error[i] = test_model(args.eigen, faces_train_ens[i],
faces_test, target_train, target_test, args)
target_pred_comb = np.zeros(target_pred.shape[1])
target_pred = target_pred.astype(int).T
if (args.conf_mat):
cm = confusion_matrix(np.tile(target_test, args.ensemble), target_pred.flatten('F'))
plt.matshow(cm, cmap='Blues')
plt.colorbar()
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()
for i in range(target_pred.shape[0]):
target_pred_comb[i] = np.bincount(target_pred[i]).argmax()
target_pred = target_pred_comb
else:
M = args.eigen
start = timer()
target_pred, distances = test_model(M, faces_train, faces_test, target_train, target_test, args)
end = timer()
draw_results(args, target_test, target_pred)
if __name__ == "__main__":
main()
|