aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authornunzip <np.scarh@gmail.com>2019-02-15 16:41:07 +0000
committernunzip <np.scarh@gmail.com>2019-02-15 16:41:07 +0000
commit4f9214360fffadd86fb767f3b2322d657567851d (patch)
tree3ed32dd02fe95db7b240b79ec5103dab7dd824a9
parent9c3582f77793b6c354ce64e584905e239ad3daf8 (diff)
downloade4-vision-4f9214360fffadd86fb767f3b2322d657567851d.tar.gz
e4-vision-4f9214360fffadd86fb767f3b2322d657567851d.tar.bz2
e4-vision-4f9214360fffadd86fb767f3b2322d657567851d.zip
Remove line from failed merge
-rw-r--r--report/paper.md4
1 files changed, 0 insertions, 4 deletions
diff --git a/report/paper.md b/report/paper.md
index 43411bc..e44444b 100644
--- a/report/paper.md
+++ b/report/paper.md
@@ -10,11 +10,7 @@ Both training and testing use 15 randomly selected images from the 10 available
## Vocabulary size
-<<<<<<< HEAD
The number of clusters or the number of centroids determines the vocabulary size when creating the codebook with the K-means method. Each descriptor is mapped to the nearest centroid, and each descriptor belonging to that cluster is mapped to the same *visual word*. This allows similar descriptors to be mapped to the same word, allowing for comparison through bag-of-words techniques.
-=======
-The number of clusters or the number of centroids determine the vocabulary size when creating a codebook with the K-means the method. Each descriptor is mapped to the nearest centroid, and each descriptor belonging to that cluster is mapped to the same *visual word*. This allows similar descriptors to be mapped to the same word, allowing for comparison through bag-of-words techniques.
->>>>>>> b052905b323972a69fbf04fd621a6d88c44c40a1
## Bag-of-words histogram of descriptor vectors