diff options
author | Vasil Zlatanov <v@skozl.com> | 2019-02-04 16:28:36 +0000 |
---|---|---|
committer | Vasil Zlatanov <v@skozl.com> | 2019-02-04 16:28:36 +0000 |
commit | 82d295c4693e17b71c52632740f4f98e141f8d49 (patch) | |
tree | 45d537accff05cdb6a9b10374c773048609d0855 | |
parent | 0cfd207fc8549a67637ce7380ce62a6d3ebbd409 (diff) | |
download | e4-vision-82d295c4693e17b71c52632740f4f98e141f8d49.tar.gz e4-vision-82d295c4693e17b71c52632740f4f98e141f8d49.tar.bz2 e4-vision-82d295c4693e17b71c52632740f4f98e141f8d49.zip |
Add base evaluate.py
-rw-r--r-- | evaluate.py | 24 |
1 files changed, 24 insertions, 0 deletions
diff --git a/evaluate.py b/evaluate.py new file mode 100644 index 0000000..6504ec1 --- /dev/null +++ b/evaluate.py @@ -0,0 +1,24 @@ +# EE4 Selected Topics From Computer Vision Coursework +# Vasil Zlatanov, Nunzio Pucci + +CLUSTER_CNT = 1337 +KMEAN_PART = 33 + +import numpy as np +import matplotlib.pyplot as plt + +from sklearn.cluster import KMeans + +train = [] +test = [] + +train_part = np.hstack(train[0:KMEAN_PART]) + +kmeans = KMeans(n_clusters=CLUSTER_CNT, random_state=0).fit(train_part) + +codewords = [] +i = 0 + +for image in train: + codewords.append(np.bincount(kmeans.predict(image) + print codewords[i].shape |