aboutsummaryrefslogtreecommitdiff
path: root/report
diff options
context:
space:
mode:
authorVasil Zlatanov <v@skozl.com>2019-02-12 18:05:25 +0000
committerVasil Zlatanov <v@skozl.com>2019-02-12 18:05:25 +0000
commitba8a1b942685ce6eb1a85d2594ada107dc2b888c (patch)
treeb6fbb0de40d0353b94987aed0a619b3e1d39ab8f /report
parent4d92df7d253d0262eb8dbb854cd0afbfff4969f7 (diff)
downloade4-vision-ba8a1b942685ce6eb1a85d2594ada107dc2b888c.tar.gz
e4-vision-ba8a1b942685ce6eb1a85d2594ada107dc2b888c.tar.bz2
e4-vision-ba8a1b942685ce6eb1a85d2594ada107dc2b888c.zip
Add random forest text
Diffstat (limited to 'report')
-rw-r--r--report/paper.md2
1 files changed, 1 insertions, 1 deletions
diff --git a/report/paper.md b/report/paper.md
index a75a7c9..1333c31 100644
--- a/report/paper.md
+++ b/report/paper.md
@@ -59,7 +59,7 @@ for K-means 100 cluster centers.
\end{center}
\end{figure}
-Figure \ref{fig:kmeanrandom} shows randomness parameter for K-means 100.
+Random forests will select a random number of features on which to apply a weak learner (such as axis aligned split) and then select the best feature of the selected ones to perform the split on, based on some criteria (our results use the *Gini index*). The fewer features that are compared for each split the quicker the trees are built and the more random they are. Therefore the randomness parameter can be considered the number of features used when making splits. We evaluate accuracy given different randomness when using a K-means vocabulary in \ref{fig:kmeanrandom}.
\begin{figure}[H]
\begin{center}