diff options
| author | Vasil Zlatanov <v@skozl.com> | 2016-12-12 21:51:10 +0000 | 
|---|---|---|
| committer | Vasil Zlatanov <v@skozl.com> | 2016-12-12 21:51:10 +0000 | 
| commit | 4b6e0102d20d9ab060ce930e4b846c8be446bb06 (patch) | |
| tree | e475eab3716738f2928f0b2063956e9b155f94ab /part_3/mylib | |
| download | e2-verilab-4b6e0102d20d9ab060ce930e4b846c8be446bb06.tar.gz e2-verilab-4b6e0102d20d9ab060ce930e4b846c8be446bb06.tar.bz2 e2-verilab-4b6e0102d20d9ab060ce930e4b846c8be446bb06.zip | |
public push
Diffstat (limited to 'part_3/mylib')
| -rw-r--r-- | part_3/mylib/add3_ge5.v | 11 | ||||
| -rw-r--r-- | part_3/mylib/bin2bcd_16.v | 97 | ||||
| -rw-r--r-- | part_3/mylib/counter_16.v | 24 | ||||
| -rw-r--r-- | part_3/mylib/divider_5000.v | 31 | ||||
| -rw-r--r-- | part_3/mylib/divider_50000.v | 31 | ||||
| -rw-r--r-- | part_3/mylib/hex_to_7seg.v | 28 | ||||
| -rw-r--r-- | part_3/mylib/pwm.v | 28 | ||||
| -rw-r--r-- | part_3/mylib/spi2adc.v | 150 | ||||
| -rw-r--r-- | part_3/mylib/spi2dac.v | 128 | 
9 files changed, 528 insertions, 0 deletions
| diff --git a/part_3/mylib/add3_ge5.v b/part_3/mylib/add3_ge5.v new file mode 100644 index 0000000..282dcac --- /dev/null +++ b/part_3/mylib/add3_ge5.v @@ -0,0 +1,11 @@ +module add3_ge5 (in,out);
 +
 +	input [3:0] in;
 +	output reg [3:0] out;
 +	
 +	always @ (in)
 +		if (in >= 4'd5)
 +			out <= in + 4'd3;
 +		else
 +			out <= in;
 +endmodule
\ No newline at end of file diff --git a/part_3/mylib/bin2bcd_16.v b/part_3/mylib/bin2bcd_16.v new file mode 100644 index 0000000..fdfb655 --- /dev/null +++ b/part_3/mylib/bin2bcd_16.v @@ -0,0 +1,97 @@ +//------------------------------
 +// Module name: bin2bcd_16
 +// Function: Converts a 16-bit binary number to 5 digits BCD
 +//            .... it uses a shift-and-add3 algorithm
 +// Creator:  Peter Cheung
 +// Version:  1.0
 +// Date:     18 Sept 2016
 +//------------------------------
 +//   For more explanation of how this work, see 
 +//     ... instructions on wwww.ee.ic.ac.uk/pcheung/teaching/E2_experiment
 +
 +module bin2bcd_16 (B, BCD_0, BCD_1, BCD_2, BCD_3, BCD_4);
 +
 +	input [15:0]	B;		// binary input number
 +	output [3:0]	BCD_0, BCD_1, BCD_2, BCD_3, BCD_4;   // BCD digit LSD to MSD
 +	
 +	wire [3:0]	w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13;
 +	wire [3:0]	w14,w15,w16,w17,w18,w19,w20,w21,w22,w23,w24,w25;
 +	wire [3:0]	w26,w27,w28,w29;
 +	wire [3:0]	a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13;
 +	wire [3:0]	a14,a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,a25;
 +	wire [3:0]	a26,a27,a28,a29;
 +
 +	// Instantiate a tree of add3-if-greater than or equal to 5 cells
 +	//  ... input is w_n, and output is a_n
 +	add3_ge5 A1 (w1,a1);
 +	add3_ge5 A2 (w2,a2);
 +	add3_ge5 A3 (w3,a3);
 +	add3_ge5 A4 (w4,a4);
 +	add3_ge5 A5 (w5,a5);
 +	add3_ge5 A6 (w6,a6);
 +	add3_ge5 A7 (w7,a7);
 +	add3_ge5 A8 (w8,a8);
 +	add3_ge5 A9 (w9,a9);
 +	add3_ge5 A10 (w10,a10);
 +	add3_ge5 A11 (w11,a11);
 +	add3_ge5 A12 (w12,a12);
 +	add3_ge5 A13 (w13,a13);
 +	add3_ge5 A14 (w14,a14);
 +	add3_ge5 A15 (w15,a15);
 +	add3_ge5 A16 (w16,a16);
 +	add3_ge5 A17 (w17,a17);
 +	add3_ge5 A18 (w18,a18);
 +	add3_ge5 A19 (w19,a19);
 +	add3_ge5 A20 (w20,a20);
 +	add3_ge5 A21 (w21,a21);
 +	add3_ge5 A22 (w22,a22);
 +	add3_ge5 A23 (w23,a23);
 +	add3_ge5 A24 (w24,a24);
 +	add3_ge5 A25 (w25,a25);
 +	add3_ge5 A26 (w26,a26);
 +	add3_ge5 A27 (w27,a27);
 +	add3_ge5 A28 (w28,a28);
 +	add3_ge5 A29 (w29,a29);
 +		
 +	// wire the tree of add3 modules together
 +	assign  w1 = {B[14:11]};		// wn is the input port to module An
 +	assign  w2 = {a1[2:0], B[10]};
 +	assign  w3 = {1'b0, B[15], a1[3], a2[3]};
 +	assign  w4 = {a2[2:0], B[9]};
 +	assign  w5 = {a3[2:0], a4[3]};
 +	assign  w6 = {a4[2:0], B[8]};
 +	assign  w7 = {a5[2:0], a6[3]};
 +	assign  w8 = {a6[2:0], B[7]};
 +	assign  w9 = {1'b0, a3[3], a5[3], a7[3]};
 +	assign  w10 = {a7[2:0], a8[3]};
 +	assign  w11 = {a8[2:0], B[6]};
 +	assign  w12 = {a9[2:0], a10[3]};
 +	assign  w13 = {a10[2:0], a11[3]};
 +	assign  w14 = {a11[2:0], B[5]};
 +	assign  w15 = {a12[2:0], a13[3]};
 +	assign  w16 = {a13[2:0], a14[3]};
 +	assign  w17 = {a14[2:0], B[4]};
 +	assign  w18 = {1'b0, a9[3], a12[3], a15[3]};
 +	assign  w19 = {a15[2:0], a16[3]};
 +	assign  w20 = {a16[2:0], a17[3]};
 +	assign  w21 = {a17[2:0], B[3]};
 +	assign  w22 = {a18[2:0], a19[3]};
 +	assign  w23 = {a19[2:0], a20[3]};
 +	assign  w24 = {a20[2:0], a21[3]};
 +	assign  w25 = {a21[2:0], B[2]};
 +	assign  w26 = {a22[2:0], a23[3]};
 +	assign  w27 = {a23[2:0], a24[3]};
 +	assign  w28 = {a24[2:0], a25[3]};
 +	assign  w29 = {a25[2:0], B[1]};
 +	
 +	// connect up to four BCD digit outputs	
 +	assign BCD_0 = {a29[2:0],B[0]};
 +	assign BCD_1 = {a28[2:0],a29[3]};
 +	assign BCD_2 = {a27[2:0],a28[3]};
 +	assign BCD_3 = {a26[2:0],a27[3]};
 +	assign BCD_4 = {1'b0, a18[3], a22[3], a26[3]};	
 +endmodule
 +
 +	
 +	
 +
 diff --git a/part_3/mylib/counter_16.v b/part_3/mylib/counter_16.v new file mode 100644 index 0000000..a52dc38 --- /dev/null +++ b/part_3/mylib/counter_16.v @@ -0,0 +1,24 @@ +`timescale 1ns / 100ps
 +
 +module counter_16 (
 +		clock,
 +		enable,
 +		count,
 +		reset
 +		);
 +		
 +		parameter BIT_SZ = 16;
 +		input clock;
 +		input enable;
 +		input reset;
 +		output reg [BIT_SZ-1:0] count;
 +		
 +		
 +		initial count = 0;
 +		
 +		always @ (posedge clock)
 +			if (reset == 1'b0)
 +				count <= 0;
 +			else if (enable == 1'b0)
 +				count <= count + 1'b1;				
 +endmodule
 diff --git a/part_3/mylib/divider_5000.v b/part_3/mylib/divider_5000.v new file mode 100644 index 0000000..2e5e20e --- /dev/null +++ b/part_3/mylib/divider_5000.v @@ -0,0 +1,31 @@ +`timescale 1ns / 100ps
 +
 +
 +module divider_5000 (
 +		clock,
 +		out
 +		);
 +		
 +		parameter BIT_SZ = 16;
 +		input clock;
 +		reg [BIT_SZ-1:0] count;
 +		
 +		initial count = 0;
 +		
 +		output reg out;
 +		
 +		
 +		always @ (posedge clock)
 +		begin
 +			if (count < 16'd5000)
 +				begin
 +				count <= count + 1'b1;
 +				out <= 1'b0;
 +				end
 +			else
 +				begin
 +				out <= 1'b1;
 +				count <= 1'b0;		
 +				end
 +		end
 +endmodule
 diff --git a/part_3/mylib/divider_50000.v b/part_3/mylib/divider_50000.v new file mode 100644 index 0000000..6ce09f9 --- /dev/null +++ b/part_3/mylib/divider_50000.v @@ -0,0 +1,31 @@ +`timescale 1ns / 100ps
 +
 +
 +module divider_50000 (
 +		clock,
 +		out
 +		);
 +		
 +		parameter BIT_SZ = 16;
 +		input clock;
 +		reg [BIT_SZ-1:0] count;
 +		
 +		initial count = 0;
 +		
 +		output reg out;
 +		
 +		
 +		always @ (posedge clock)
 +		begin
 +			if (count < 16'd50000)
 +				begin
 +				count <= count + 1'b1;
 +				out <= 1'b0;
 +				end
 +			else
 +				begin
 +				out <= 1'b1;
 +				count <= 1'b0;		
 +				end
 +		end
 +endmodule
 diff --git a/part_3/mylib/hex_to_7seg.v b/part_3/mylib/hex_to_7seg.v new file mode 100644 index 0000000..6b476e3 --- /dev/null +++ b/part_3/mylib/hex_to_7seg.v @@ -0,0 +1,28 @@ +module hex_to_7seg (out,in);
 +	output [6:0] out;
 +		input [3:0] in;
 +		
 +			reg [6:0] out;
 +			
 +			always @ (*)
 +				case (in)
 +				4'h0: out = 7'b1000000;
 +				4'h1: out = 7'b1111001;
 +				4'h2: out = 7'b0100100;
 +				4'h3: out = 7'b0110000;
 +				4'h4: out = 7'b0011001;
 +				4'h5: out = 7'b0010010;
 +				4'h6: out = 7'b0000010;
 +				4'h7: out = 7'b1111000;
 +				4'h8: out = 7'b0000000;
 +				4'h9: out = 7'b0011000;
 +				4'hA: out = 7'b0001000;
 +				4'hB: out = 7'b0000011;
 +				4'hC: out = 7'b1000110;
 +				4'hD: out = 7'b0100001;
 +				4'hE: out = 7'b0000110;
 +				4'hF: out = 7'b0001110;
 +				endcase
 +endmodule
 +
 +				
\ No newline at end of file diff --git a/part_3/mylib/pwm.v b/part_3/mylib/pwm.v new file mode 100644 index 0000000..6dce0a5 --- /dev/null +++ b/part_3/mylib/pwm.v @@ -0,0 +1,28 @@ +module pwm (clk, data_in, load, pwm_out);
 +
 +	input clk;
 +	input [9:0] data_in;
 +	input load;
 +	output pwm_out;
 +	
 +	reg [9:0] d;
 +	reg [9:0] count;
 +	reg pwm_out;
 +	
 +	always @ (posedge clk)
 +		if (load == 1'b1) d <= data_in;
 +	
 +	initial count = 10'b0;
 +	
 +	always @ (posedge clk) begin
 +		count <= count + 1'b1;
 +		if (count > d)
 +			pwm_out <= 1'b0;
 +		else
 +			pwm_out <= 1'b1;
 +			
 +	end
 +
 +
 +
 +endmodule
\ No newline at end of file diff --git a/part_3/mylib/spi2adc.v b/part_3/mylib/spi2adc.v new file mode 100644 index 0000000..3878f71 --- /dev/null +++ b/part_3/mylib/spi2adc.v @@ -0,0 +1,150 @@ +//------------------------------
 +// Module name: spi2adc
 +// Function: SPI interface for MCP3002 ADC
 +// Creator:  Peter Cheung
 +// Version:  1.1
 +// Date:     24 Jan 2014
 +//------------------------------
 +
 +module spi2adc (sysclk, start, channel, data_from_adc, data_valid, 
 +						sdata_to_adc, adc_cs, adc_sck, sdata_from_adc);
 +
 +	input	sysclk;			// 50MHz system clock of DE0
 +	input	start;			// Pulse to start ADC, minimum wide = clock period
 +	input	channel;			// channel 0 or 1 to be converted
 +	output [9:0] data_from_adc;	// 10-bit ADC result
 +	output data_valid;	// High indicates that converted data valid
 +	output sdata_to_adc;	// Serial commands send to adc chip
 +	output adc_cs;			// chip select - low when converting
 +	output adc_sck;		// SPI clock - active during conversion
 +	input sdata_from_adc;	// Converted serial data from ADC, MSB first
 +
 +//-------------Input Ports-----------------------------
 +// All the input ports should be wires
 +	wire	sysclk, start, sdata_from_adc;
 +
 +//-------------Output Ports-----------------------------
 +// Output port can be a storage element (reg) or a wire
 +	reg [9:0]	data_from_adc;
 +	reg			adc_cs;
 +	wire			sdata_to_adc, adc_sck, data_valid;
 +	
 +//-------------Configuration parameters for ADC --------
 +	parameter	SGL=1'b1;	// 0:diff i/p, 1:single-ended
 +	parameter	MSBF=1'b1;	// 0:LSB first, 1:MSB first
 +			
 +// --- Submodule: Generate internal clock at 1 MHz -----
 +	reg			clk_1MHz;	// 1Mhz clock derived from 50MHz
 +	reg [4:0]	ctr;			// internal counter
 +	parameter	TIME_CONSTANT = 5'd24;  // change this for diff clk freq
 +	initial begin
 +		clk_1MHz = 0;			// don't need to reset - don't care if it is 1 or 0 to start
 +		ctr = 5'b0;				//  ... to start.  Initialise to make simulation easier
 +	end
 +		
 +	always @ (posedge sysclk)   // 
 +	  if (ctr==0) begin
 +		  ctr <= TIME_CONSTANT;
 +		  clk_1MHz <= ~clk_1MHz; // toggle the output clock for squarewave
 +		end
 +	  else
 +		  ctr <= ctr - 1'b1;
 +// ---- end internal clock generator ----------
 +
 +// ---- Detect start is asserted with a small state machine
 +	// .... FF set on positive edge of start
 +	// .... reset when adc_cs goes high again
 +	reg [1:0] 	sr_state;
 +	parameter	IDLE  = 2'b00,WAIT_CSB_FALL = 2'b01, WAIT_CSB_HIGH = 2'b10;
 +	reg			adc_start;
 +	
 +	initial begin
 +		sr_state = IDLE;
 +		adc_start = 1'b0;	// set while sending data to ADC
 +		end
 +	
 +	always @ (posedge sysclk)
 +		case (sr_state)
 +			IDLE:	if (start==1'b0) sr_state <= IDLE;
 +					else	begin
 +						sr_state <= WAIT_CSB_FALL;
 +						adc_start <= 1'b1;
 +						end  				
 +			WAIT_CSB_FALL: if (adc_cs==1'b1) sr_state <= WAIT_CSB_FALL;
 +					else sr_state <= WAIT_CSB_HIGH;
 +					
 +			WAIT_CSB_HIGH: if (adc_cs==1'b0) sr_state <= WAIT_CSB_HIGH;
 +					else begin
 +						sr_state <= IDLE;
 +						adc_start <= 1'b0;
 +						end	
 +			default: sr_state <= IDLE;
 +		endcase
 +//------- End circuit to detect start and end of conversion	
 +
 +	
 +// spi controller designed as a state machine
 +// .... with 16 states (idle, and S1-S15 indicated by state value
 +
 +	reg [4:0] 	state;
 +	reg  	adc_done, adc_din, shift_ena;
 +	
 +	initial	begin	
 +		state = 5'b0; adc_cs = 1'b1; adc_done = 1'b0; 
 +		adc_din = 1'b0; shift_ena <= 1'b0;
 +		end
 +		
 +	always @(posedge clk_1MHz)  begin
 +	
 +	// default outputs and state transition
 +		adc_cs <= 1'b0;  adc_done <= 1'b0;  adc_din <= 1'b0; shift_ena <= 1'b0;
 +		state <= state + 1'b1;
 +		case (state)
 +			5'd0:	begin
 +						if (adc_start==1'b0) begin
 +							state <= 5'd0;			// still idle
 +							adc_cs <= 1'b1;		// chip select not active
 +							end
 +						else begin
 +							state <= 5'd1;			// start converting
 +							adc_din <= 1'b1;		// start bit is 1
 +							end
 +					end
 +			5'd1:	adc_din <= SGL;				// SGL bit
 +			5'd2:	adc_din <= channel;			// CH bit
 +			5'd3:	adc_din <= MSBF;				// MSB first bit
 +			5'd4: shift_ena <= 1'b1;  			// start shifting data from adc
 +			5'd15: begin
 +						shift_ena <= 1'b0;
 +						adc_done <= 1'b1;
 +					 end
 +			5'd16: begin  
 +						adc_cs <= 1'b1;		// last state - disable chip select
 +						state <= 5'd0;  		// go back to idle state
 +					 end
 +			default: 				
 +						shift_ena <= 1'b1;	// unspecified states are covered by default above
 +			endcase
 +		end	// ... always
 +	
 +	// shift register for output data
 +	reg [9:0] shift_reg;
 +	initial	begin
 +			shift_reg = 10'b0;
 +			data_from_adc = 10'b0;
 +			end
 +	
 +	always @(negedge clk_1MHz)
 +		if((adc_cs==1'b0)&&(shift_ena==1'b1))		// start shifting data_in
 +				shift_reg <= {shift_reg[8:0],sdata_from_adc};
 +	
 +	// Latch converted output data
 +	always @(posedge clk_1MHz)
 +		if(adc_done) 					
 +				data_from_adc = shift_reg;
 +
 +	// Assign outputs to drive SPI interface to DAC
 +		assign adc_sck = !clk_1MHz & !adc_cs;
 +		assign sdata_to_adc = adc_din;
 +		assign data_valid = adc_cs;
 +endmodule
\ No newline at end of file diff --git a/part_3/mylib/spi2dac.v b/part_3/mylib/spi2dac.v new file mode 100644 index 0000000..586a231 --- /dev/null +++ b/part_3/mylib/spi2dac.v @@ -0,0 +1,128 @@ +//------------------------------
 +// Module name: spi2dac
 +// Function: SPI interface for MPC4911 DAC
 +// Creator:  Peter Cheung
 +// Version:  2.0
 +// Date:     8 Nov 2016
 +//------------------------------
 +
 +module spi2dac (sysclk, data_in, load, dac_sdi, dac_cs, dac_sck, dac_ld);
 +
 +	input	sysclk;			// 50MHz system clock of DE1
 +	input	[9:0]	data_in;	// input data to DAC
 +	input	load;				// Pulse to load data to dac
 +	output dac_sdi;		// SPI serial data out
 +	output dac_cs;			// chip select - low when sending data to dac
 +	output dac_sck;		// SPI clock, 16 cycles at half sysclk freq
 +	output dac_ld;
 +
 +//-------------Input Ports-----------------------------
 +// All the input ports should be wires
 +	wire			sysclk, load;
 +	wire [9:0]	data_in;
 +	
 +//-------------Output Ports-----------------------------
 +// Output port can be a storage element (reg) or a wire
 +	reg			dac_cs, dac_ld;
 +	wire			dac_sck, dac_sdi;
 +	
 +	parameter	BUF=1'b1;		// 0:no buffer, 1:Vref buffered
 +	parameter	GA_N=1'b1;		// 0:gain = 2x, 1:gain = 1x
 +	parameter	SHDN_N=1'b1;	// 0:power down, 1:dac active
 +	
 +	wire [3:0] cmd = {1'b0,BUF,GA_N,SHDN_N};  // wire to VDD or GND
 +	
 +	// --- internal 1MHz symmetical clock generator -----
 +	reg			clk_1MHz;	// 1Mhz clock derived from 50MHz
 +	reg [4:0]	ctr;			// internal counter
 +	
 +	parameter	TC = 5'd24;  // Terminal count - change this for diff clk freq
 +	initial begin
 +		clk_1MHz = 0;			// don't need to reset - don't care if it is 1 or 0 to start
 +		ctr = 5'b0;				//  ... Initialise when FPGA is configured
 +	end
 +		
 +	always @ (posedge sysclk)    
 +	  if (ctr==0) begin
 +		  ctr <= TC;
 +		  clk_1MHz <= ~clk_1MHz; // toggle the output clock for squarewave
 +		end
 +	  else
 +		  ctr <= ctr - 1'b1;
 +	// ---- end internal 1MHz symmetical clock generator ----------
 +
 +	// ---- FSM to detect rising edge of load and falling edge of dac_cs
 +	// .... sr_state set on posedge of load
 +	// .... sr_state reset when dac_cs goes high at the end of DAC output cycle
 +	reg [1:0] 	sr_state;
 +	parameter	IDLE  = 2'b00,WAIT_CSB_FALL = 2'b01, WAIT_CSB_HIGH = 2'b10;
 +	reg			dac_start;		 // set if a DAC write is detected
 +	
 +	initial begin
 +		sr_state = IDLE;
 +		dac_start = 1'b0;	// set while sending data to DAC
 +		end
 +	
 +	always @ (posedge sysclk)  // state transition
 +		case (sr_state)
 +			IDLE:	if (load==1'b1) sr_state <= WAIT_CSB_FALL;
 +			WAIT_CSB_FALL: if (dac_cs==1'b0) sr_state <= WAIT_CSB_HIGH;
 +			WAIT_CSB_HIGH: if (dac_cs==1'b1) sr_state <= IDLE;
 +			default: sr_state <= IDLE;
 +		endcase
 +	
 +	always @ (*)
 +		case (sr_state)
 +			IDLE: dac_start = 1'b0;
 +			WAIT_CSB_FALL: dac_start = 1'b1;
 +			WAIT_CSB_HIGH: dac_start = 1'b0;
 +			default: dac_start = 1'b0;
 +		endcase
 +		
 +	//------- End circuit to detect start and end of conversion	state machine
 +
 +	//------- spi controller FSM
 +	// .... with 17 states (idle, and S1-S16 
 +	// .... for the 16 cycles each sending 1-bit to dac)
 +	reg [4:0] 	state;
 +	
 +	initial	begin	
 +		state = 5'b0; dac_ld = 1'b0; dac_cs = 1'b1; 
 +		end
 +		
 +	always @(posedge clk_1MHz)  // FSM state transition
 +		case (state)
 +			5'd0:	if (dac_start == 1'b1)    // waiting to start
 +						state <= state + 1'b1; 
 +					else 
 +						state <= 5'b0; 
 +			5'd17: 	state <= 5'd0;  // go back to idle state
 +			default: state <= state + 1'b1;	// default go to next state
 +		endcase
 +	
 +	always @ (*)	begin			// FSM output
 +		dac_cs = 1'b0;  dac_ld = 1'b1;
 +		case (state)
 +			5'd0: 	dac_cs = 1'b1;
 +			5'd17: 	begin dac_cs = 1'b1; dac_ld = 1'b0; end
 +			default: begin dac_cs = 1'b0;	dac_ld = 1'b1;	end
 +			endcase
 +		end //always
 +	// --------- END of spi controller FSM
 +	
 +	// shift register for output data
 +	reg [15:0] shift_reg;
 +	initial	begin	
 +		shift_reg = 16'b0; 
 +		end
 +
 +	always @(posedge clk_1MHz)
 +		if((dac_start==1'b1)&&(dac_cs==1'b1))		// parallel load data to shift reg
 +			shift_reg <= {cmd,data_in,2'b00};
 +		else 													// .. else start shifting
 +			shift_reg <= {shift_reg[14:0],1'b0};
 +	
 +	// Assign outputs to drive SPI interface to DAC
 +			assign dac_sck = !clk_1MHz&!dac_cs;
 +			assign dac_sdi = shift_reg[15];
 +endmodule
\ No newline at end of file | 
