diff options
Diffstat (limited to 'part_3/mylib')
-rw-r--r-- | part_3/mylib/add3_ge5.v | 11 | ||||
-rw-r--r-- | part_3/mylib/bin2bcd_16.v | 97 | ||||
-rw-r--r-- | part_3/mylib/counter_16.v | 24 | ||||
-rw-r--r-- | part_3/mylib/divider_5000.v | 31 | ||||
-rw-r--r-- | part_3/mylib/divider_50000.v | 31 | ||||
-rw-r--r-- | part_3/mylib/hex_to_7seg.v | 28 | ||||
-rw-r--r-- | part_3/mylib/pwm.v | 28 | ||||
-rw-r--r-- | part_3/mylib/spi2adc.v | 150 | ||||
-rw-r--r-- | part_3/mylib/spi2dac.v | 128 |
9 files changed, 528 insertions, 0 deletions
diff --git a/part_3/mylib/add3_ge5.v b/part_3/mylib/add3_ge5.v new file mode 100644 index 0000000..282dcac --- /dev/null +++ b/part_3/mylib/add3_ge5.v @@ -0,0 +1,11 @@ +module add3_ge5 (in,out);
+
+ input [3:0] in;
+ output reg [3:0] out;
+
+ always @ (in)
+ if (in >= 4'd5)
+ out <= in + 4'd3;
+ else
+ out <= in;
+endmodule
\ No newline at end of file diff --git a/part_3/mylib/bin2bcd_16.v b/part_3/mylib/bin2bcd_16.v new file mode 100644 index 0000000..fdfb655 --- /dev/null +++ b/part_3/mylib/bin2bcd_16.v @@ -0,0 +1,97 @@ +//------------------------------
+// Module name: bin2bcd_16
+// Function: Converts a 16-bit binary number to 5 digits BCD
+// .... it uses a shift-and-add3 algorithm
+// Creator: Peter Cheung
+// Version: 1.0
+// Date: 18 Sept 2016
+//------------------------------
+// For more explanation of how this work, see
+// ... instructions on wwww.ee.ic.ac.uk/pcheung/teaching/E2_experiment
+
+module bin2bcd_16 (B, BCD_0, BCD_1, BCD_2, BCD_3, BCD_4);
+
+ input [15:0] B; // binary input number
+ output [3:0] BCD_0, BCD_1, BCD_2, BCD_3, BCD_4; // BCD digit LSD to MSD
+
+ wire [3:0] w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13;
+ wire [3:0] w14,w15,w16,w17,w18,w19,w20,w21,w22,w23,w24,w25;
+ wire [3:0] w26,w27,w28,w29;
+ wire [3:0] a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13;
+ wire [3:0] a14,a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,a25;
+ wire [3:0] a26,a27,a28,a29;
+
+ // Instantiate a tree of add3-if-greater than or equal to 5 cells
+ // ... input is w_n, and output is a_n
+ add3_ge5 A1 (w1,a1);
+ add3_ge5 A2 (w2,a2);
+ add3_ge5 A3 (w3,a3);
+ add3_ge5 A4 (w4,a4);
+ add3_ge5 A5 (w5,a5);
+ add3_ge5 A6 (w6,a6);
+ add3_ge5 A7 (w7,a7);
+ add3_ge5 A8 (w8,a8);
+ add3_ge5 A9 (w9,a9);
+ add3_ge5 A10 (w10,a10);
+ add3_ge5 A11 (w11,a11);
+ add3_ge5 A12 (w12,a12);
+ add3_ge5 A13 (w13,a13);
+ add3_ge5 A14 (w14,a14);
+ add3_ge5 A15 (w15,a15);
+ add3_ge5 A16 (w16,a16);
+ add3_ge5 A17 (w17,a17);
+ add3_ge5 A18 (w18,a18);
+ add3_ge5 A19 (w19,a19);
+ add3_ge5 A20 (w20,a20);
+ add3_ge5 A21 (w21,a21);
+ add3_ge5 A22 (w22,a22);
+ add3_ge5 A23 (w23,a23);
+ add3_ge5 A24 (w24,a24);
+ add3_ge5 A25 (w25,a25);
+ add3_ge5 A26 (w26,a26);
+ add3_ge5 A27 (w27,a27);
+ add3_ge5 A28 (w28,a28);
+ add3_ge5 A29 (w29,a29);
+
+ // wire the tree of add3 modules together
+ assign w1 = {B[14:11]}; // wn is the input port to module An
+ assign w2 = {a1[2:0], B[10]};
+ assign w3 = {1'b0, B[15], a1[3], a2[3]};
+ assign w4 = {a2[2:0], B[9]};
+ assign w5 = {a3[2:0], a4[3]};
+ assign w6 = {a4[2:0], B[8]};
+ assign w7 = {a5[2:0], a6[3]};
+ assign w8 = {a6[2:0], B[7]};
+ assign w9 = {1'b0, a3[3], a5[3], a7[3]};
+ assign w10 = {a7[2:0], a8[3]};
+ assign w11 = {a8[2:0], B[6]};
+ assign w12 = {a9[2:0], a10[3]};
+ assign w13 = {a10[2:0], a11[3]};
+ assign w14 = {a11[2:0], B[5]};
+ assign w15 = {a12[2:0], a13[3]};
+ assign w16 = {a13[2:0], a14[3]};
+ assign w17 = {a14[2:0], B[4]};
+ assign w18 = {1'b0, a9[3], a12[3], a15[3]};
+ assign w19 = {a15[2:0], a16[3]};
+ assign w20 = {a16[2:0], a17[3]};
+ assign w21 = {a17[2:0], B[3]};
+ assign w22 = {a18[2:0], a19[3]};
+ assign w23 = {a19[2:0], a20[3]};
+ assign w24 = {a20[2:0], a21[3]};
+ assign w25 = {a21[2:0], B[2]};
+ assign w26 = {a22[2:0], a23[3]};
+ assign w27 = {a23[2:0], a24[3]};
+ assign w28 = {a24[2:0], a25[3]};
+ assign w29 = {a25[2:0], B[1]};
+
+ // connect up to four BCD digit outputs
+ assign BCD_0 = {a29[2:0],B[0]};
+ assign BCD_1 = {a28[2:0],a29[3]};
+ assign BCD_2 = {a27[2:0],a28[3]};
+ assign BCD_3 = {a26[2:0],a27[3]};
+ assign BCD_4 = {1'b0, a18[3], a22[3], a26[3]};
+endmodule
+
+
+
+
diff --git a/part_3/mylib/counter_16.v b/part_3/mylib/counter_16.v new file mode 100644 index 0000000..a52dc38 --- /dev/null +++ b/part_3/mylib/counter_16.v @@ -0,0 +1,24 @@ +`timescale 1ns / 100ps
+
+module counter_16 (
+ clock,
+ enable,
+ count,
+ reset
+ );
+
+ parameter BIT_SZ = 16;
+ input clock;
+ input enable;
+ input reset;
+ output reg [BIT_SZ-1:0] count;
+
+
+ initial count = 0;
+
+ always @ (posedge clock)
+ if (reset == 1'b0)
+ count <= 0;
+ else if (enable == 1'b0)
+ count <= count + 1'b1;
+endmodule
diff --git a/part_3/mylib/divider_5000.v b/part_3/mylib/divider_5000.v new file mode 100644 index 0000000..2e5e20e --- /dev/null +++ b/part_3/mylib/divider_5000.v @@ -0,0 +1,31 @@ +`timescale 1ns / 100ps
+
+
+module divider_5000 (
+ clock,
+ out
+ );
+
+ parameter BIT_SZ = 16;
+ input clock;
+ reg [BIT_SZ-1:0] count;
+
+ initial count = 0;
+
+ output reg out;
+
+
+ always @ (posedge clock)
+ begin
+ if (count < 16'd5000)
+ begin
+ count <= count + 1'b1;
+ out <= 1'b0;
+ end
+ else
+ begin
+ out <= 1'b1;
+ count <= 1'b0;
+ end
+ end
+endmodule
diff --git a/part_3/mylib/divider_50000.v b/part_3/mylib/divider_50000.v new file mode 100644 index 0000000..6ce09f9 --- /dev/null +++ b/part_3/mylib/divider_50000.v @@ -0,0 +1,31 @@ +`timescale 1ns / 100ps
+
+
+module divider_50000 (
+ clock,
+ out
+ );
+
+ parameter BIT_SZ = 16;
+ input clock;
+ reg [BIT_SZ-1:0] count;
+
+ initial count = 0;
+
+ output reg out;
+
+
+ always @ (posedge clock)
+ begin
+ if (count < 16'd50000)
+ begin
+ count <= count + 1'b1;
+ out <= 1'b0;
+ end
+ else
+ begin
+ out <= 1'b1;
+ count <= 1'b0;
+ end
+ end
+endmodule
diff --git a/part_3/mylib/hex_to_7seg.v b/part_3/mylib/hex_to_7seg.v new file mode 100644 index 0000000..6b476e3 --- /dev/null +++ b/part_3/mylib/hex_to_7seg.v @@ -0,0 +1,28 @@ +module hex_to_7seg (out,in);
+ output [6:0] out;
+ input [3:0] in;
+
+ reg [6:0] out;
+
+ always @ (*)
+ case (in)
+ 4'h0: out = 7'b1000000;
+ 4'h1: out = 7'b1111001;
+ 4'h2: out = 7'b0100100;
+ 4'h3: out = 7'b0110000;
+ 4'h4: out = 7'b0011001;
+ 4'h5: out = 7'b0010010;
+ 4'h6: out = 7'b0000010;
+ 4'h7: out = 7'b1111000;
+ 4'h8: out = 7'b0000000;
+ 4'h9: out = 7'b0011000;
+ 4'hA: out = 7'b0001000;
+ 4'hB: out = 7'b0000011;
+ 4'hC: out = 7'b1000110;
+ 4'hD: out = 7'b0100001;
+ 4'hE: out = 7'b0000110;
+ 4'hF: out = 7'b0001110;
+ endcase
+endmodule
+
+
\ No newline at end of file diff --git a/part_3/mylib/pwm.v b/part_3/mylib/pwm.v new file mode 100644 index 0000000..6dce0a5 --- /dev/null +++ b/part_3/mylib/pwm.v @@ -0,0 +1,28 @@ +module pwm (clk, data_in, load, pwm_out);
+
+ input clk;
+ input [9:0] data_in;
+ input load;
+ output pwm_out;
+
+ reg [9:0] d;
+ reg [9:0] count;
+ reg pwm_out;
+
+ always @ (posedge clk)
+ if (load == 1'b1) d <= data_in;
+
+ initial count = 10'b0;
+
+ always @ (posedge clk) begin
+ count <= count + 1'b1;
+ if (count > d)
+ pwm_out <= 1'b0;
+ else
+ pwm_out <= 1'b1;
+
+ end
+
+
+
+endmodule
\ No newline at end of file diff --git a/part_3/mylib/spi2adc.v b/part_3/mylib/spi2adc.v new file mode 100644 index 0000000..3878f71 --- /dev/null +++ b/part_3/mylib/spi2adc.v @@ -0,0 +1,150 @@ +//------------------------------
+// Module name: spi2adc
+// Function: SPI interface for MCP3002 ADC
+// Creator: Peter Cheung
+// Version: 1.1
+// Date: 24 Jan 2014
+//------------------------------
+
+module spi2adc (sysclk, start, channel, data_from_adc, data_valid,
+ sdata_to_adc, adc_cs, adc_sck, sdata_from_adc);
+
+ input sysclk; // 50MHz system clock of DE0
+ input start; // Pulse to start ADC, minimum wide = clock period
+ input channel; // channel 0 or 1 to be converted
+ output [9:0] data_from_adc; // 10-bit ADC result
+ output data_valid; // High indicates that converted data valid
+ output sdata_to_adc; // Serial commands send to adc chip
+ output adc_cs; // chip select - low when converting
+ output adc_sck; // SPI clock - active during conversion
+ input sdata_from_adc; // Converted serial data from ADC, MSB first
+
+//-------------Input Ports-----------------------------
+// All the input ports should be wires
+ wire sysclk, start, sdata_from_adc;
+
+//-------------Output Ports-----------------------------
+// Output port can be a storage element (reg) or a wire
+ reg [9:0] data_from_adc;
+ reg adc_cs;
+ wire sdata_to_adc, adc_sck, data_valid;
+
+//-------------Configuration parameters for ADC --------
+ parameter SGL=1'b1; // 0:diff i/p, 1:single-ended
+ parameter MSBF=1'b1; // 0:LSB first, 1:MSB first
+
+// --- Submodule: Generate internal clock at 1 MHz -----
+ reg clk_1MHz; // 1Mhz clock derived from 50MHz
+ reg [4:0] ctr; // internal counter
+ parameter TIME_CONSTANT = 5'd24; // change this for diff clk freq
+ initial begin
+ clk_1MHz = 0; // don't need to reset - don't care if it is 1 or 0 to start
+ ctr = 5'b0; // ... to start. Initialise to make simulation easier
+ end
+
+ always @ (posedge sysclk) //
+ if (ctr==0) begin
+ ctr <= TIME_CONSTANT;
+ clk_1MHz <= ~clk_1MHz; // toggle the output clock for squarewave
+ end
+ else
+ ctr <= ctr - 1'b1;
+// ---- end internal clock generator ----------
+
+// ---- Detect start is asserted with a small state machine
+ // .... FF set on positive edge of start
+ // .... reset when adc_cs goes high again
+ reg [1:0] sr_state;
+ parameter IDLE = 2'b00,WAIT_CSB_FALL = 2'b01, WAIT_CSB_HIGH = 2'b10;
+ reg adc_start;
+
+ initial begin
+ sr_state = IDLE;
+ adc_start = 1'b0; // set while sending data to ADC
+ end
+
+ always @ (posedge sysclk)
+ case (sr_state)
+ IDLE: if (start==1'b0) sr_state <= IDLE;
+ else begin
+ sr_state <= WAIT_CSB_FALL;
+ adc_start <= 1'b1;
+ end
+ WAIT_CSB_FALL: if (adc_cs==1'b1) sr_state <= WAIT_CSB_FALL;
+ else sr_state <= WAIT_CSB_HIGH;
+
+ WAIT_CSB_HIGH: if (adc_cs==1'b0) sr_state <= WAIT_CSB_HIGH;
+ else begin
+ sr_state <= IDLE;
+ adc_start <= 1'b0;
+ end
+ default: sr_state <= IDLE;
+ endcase
+//------- End circuit to detect start and end of conversion
+
+
+// spi controller designed as a state machine
+// .... with 16 states (idle, and S1-S15 indicated by state value
+
+ reg [4:0] state;
+ reg adc_done, adc_din, shift_ena;
+
+ initial begin
+ state = 5'b0; adc_cs = 1'b1; adc_done = 1'b0;
+ adc_din = 1'b0; shift_ena <= 1'b0;
+ end
+
+ always @(posedge clk_1MHz) begin
+
+ // default outputs and state transition
+ adc_cs <= 1'b0; adc_done <= 1'b0; adc_din <= 1'b0; shift_ena <= 1'b0;
+ state <= state + 1'b1;
+ case (state)
+ 5'd0: begin
+ if (adc_start==1'b0) begin
+ state <= 5'd0; // still idle
+ adc_cs <= 1'b1; // chip select not active
+ end
+ else begin
+ state <= 5'd1; // start converting
+ adc_din <= 1'b1; // start bit is 1
+ end
+ end
+ 5'd1: adc_din <= SGL; // SGL bit
+ 5'd2: adc_din <= channel; // CH bit
+ 5'd3: adc_din <= MSBF; // MSB first bit
+ 5'd4: shift_ena <= 1'b1; // start shifting data from adc
+ 5'd15: begin
+ shift_ena <= 1'b0;
+ adc_done <= 1'b1;
+ end
+ 5'd16: begin
+ adc_cs <= 1'b1; // last state - disable chip select
+ state <= 5'd0; // go back to idle state
+ end
+ default:
+ shift_ena <= 1'b1; // unspecified states are covered by default above
+ endcase
+ end // ... always
+
+ // shift register for output data
+ reg [9:0] shift_reg;
+ initial begin
+ shift_reg = 10'b0;
+ data_from_adc = 10'b0;
+ end
+
+ always @(negedge clk_1MHz)
+ if((adc_cs==1'b0)&&(shift_ena==1'b1)) // start shifting data_in
+ shift_reg <= {shift_reg[8:0],sdata_from_adc};
+
+ // Latch converted output data
+ always @(posedge clk_1MHz)
+ if(adc_done)
+ data_from_adc = shift_reg;
+
+ // Assign outputs to drive SPI interface to DAC
+ assign adc_sck = !clk_1MHz & !adc_cs;
+ assign sdata_to_adc = adc_din;
+ assign data_valid = adc_cs;
+endmodule
\ No newline at end of file diff --git a/part_3/mylib/spi2dac.v b/part_3/mylib/spi2dac.v new file mode 100644 index 0000000..586a231 --- /dev/null +++ b/part_3/mylib/spi2dac.v @@ -0,0 +1,128 @@ +//------------------------------
+// Module name: spi2dac
+// Function: SPI interface for MPC4911 DAC
+// Creator: Peter Cheung
+// Version: 2.0
+// Date: 8 Nov 2016
+//------------------------------
+
+module spi2dac (sysclk, data_in, load, dac_sdi, dac_cs, dac_sck, dac_ld);
+
+ input sysclk; // 50MHz system clock of DE1
+ input [9:0] data_in; // input data to DAC
+ input load; // Pulse to load data to dac
+ output dac_sdi; // SPI serial data out
+ output dac_cs; // chip select - low when sending data to dac
+ output dac_sck; // SPI clock, 16 cycles at half sysclk freq
+ output dac_ld;
+
+//-------------Input Ports-----------------------------
+// All the input ports should be wires
+ wire sysclk, load;
+ wire [9:0] data_in;
+
+//-------------Output Ports-----------------------------
+// Output port can be a storage element (reg) or a wire
+ reg dac_cs, dac_ld;
+ wire dac_sck, dac_sdi;
+
+ parameter BUF=1'b1; // 0:no buffer, 1:Vref buffered
+ parameter GA_N=1'b1; // 0:gain = 2x, 1:gain = 1x
+ parameter SHDN_N=1'b1; // 0:power down, 1:dac active
+
+ wire [3:0] cmd = {1'b0,BUF,GA_N,SHDN_N}; // wire to VDD or GND
+
+ // --- internal 1MHz symmetical clock generator -----
+ reg clk_1MHz; // 1Mhz clock derived from 50MHz
+ reg [4:0] ctr; // internal counter
+
+ parameter TC = 5'd24; // Terminal count - change this for diff clk freq
+ initial begin
+ clk_1MHz = 0; // don't need to reset - don't care if it is 1 or 0 to start
+ ctr = 5'b0; // ... Initialise when FPGA is configured
+ end
+
+ always @ (posedge sysclk)
+ if (ctr==0) begin
+ ctr <= TC;
+ clk_1MHz <= ~clk_1MHz; // toggle the output clock for squarewave
+ end
+ else
+ ctr <= ctr - 1'b1;
+ // ---- end internal 1MHz symmetical clock generator ----------
+
+ // ---- FSM to detect rising edge of load and falling edge of dac_cs
+ // .... sr_state set on posedge of load
+ // .... sr_state reset when dac_cs goes high at the end of DAC output cycle
+ reg [1:0] sr_state;
+ parameter IDLE = 2'b00,WAIT_CSB_FALL = 2'b01, WAIT_CSB_HIGH = 2'b10;
+ reg dac_start; // set if a DAC write is detected
+
+ initial begin
+ sr_state = IDLE;
+ dac_start = 1'b0; // set while sending data to DAC
+ end
+
+ always @ (posedge sysclk) // state transition
+ case (sr_state)
+ IDLE: if (load==1'b1) sr_state <= WAIT_CSB_FALL;
+ WAIT_CSB_FALL: if (dac_cs==1'b0) sr_state <= WAIT_CSB_HIGH;
+ WAIT_CSB_HIGH: if (dac_cs==1'b1) sr_state <= IDLE;
+ default: sr_state <= IDLE;
+ endcase
+
+ always @ (*)
+ case (sr_state)
+ IDLE: dac_start = 1'b0;
+ WAIT_CSB_FALL: dac_start = 1'b1;
+ WAIT_CSB_HIGH: dac_start = 1'b0;
+ default: dac_start = 1'b0;
+ endcase
+
+ //------- End circuit to detect start and end of conversion state machine
+
+ //------- spi controller FSM
+ // .... with 17 states (idle, and S1-S16
+ // .... for the 16 cycles each sending 1-bit to dac)
+ reg [4:0] state;
+
+ initial begin
+ state = 5'b0; dac_ld = 1'b0; dac_cs = 1'b1;
+ end
+
+ always @(posedge clk_1MHz) // FSM state transition
+ case (state)
+ 5'd0: if (dac_start == 1'b1) // waiting to start
+ state <= state + 1'b1;
+ else
+ state <= 5'b0;
+ 5'd17: state <= 5'd0; // go back to idle state
+ default: state <= state + 1'b1; // default go to next state
+ endcase
+
+ always @ (*) begin // FSM output
+ dac_cs = 1'b0; dac_ld = 1'b1;
+ case (state)
+ 5'd0: dac_cs = 1'b1;
+ 5'd17: begin dac_cs = 1'b1; dac_ld = 1'b0; end
+ default: begin dac_cs = 1'b0; dac_ld = 1'b1; end
+ endcase
+ end //always
+ // --------- END of spi controller FSM
+
+ // shift register for output data
+ reg [15:0] shift_reg;
+ initial begin
+ shift_reg = 16'b0;
+ end
+
+ always @(posedge clk_1MHz)
+ if((dac_start==1'b1)&&(dac_cs==1'b1)) // parallel load data to shift reg
+ shift_reg <= {cmd,data_in,2'b00};
+ else // .. else start shifting
+ shift_reg <= {shift_reg[14:0],1'b0};
+
+ // Assign outputs to drive SPI interface to DAC
+ assign dac_sck = !clk_1MHz&!dac_cs;
+ assign dac_sdi = shift_reg[15];
+endmodule
\ No newline at end of file |