diff options
author | nunzip <np.scarh@gmail.com> | 2018-11-20 18:10:00 +0000 |
---|---|---|
committer | nunzip <np.scarh@gmail.com> | 2018-11-20 18:10:00 +0000 |
commit | 858169eab2043dbacfe160f7e6873501c13f8287 (patch) | |
tree | fb6394929a3e2abb58a9c338080a4884b3e9b370 /report | |
parent | 3f19f51598d126ca3b8cfe28dbe5b86111398a17 (diff) | |
download | vz215_np1915-858169eab2043dbacfe160f7e6873501c13f8287.tar.gz vz215_np1915-858169eab2043dbacfe160f7e6873501c13f8287.tar.bz2 vz215_np1915-858169eab2043dbacfe160f7e6873501c13f8287.zip |
Add variance part 1
Diffstat (limited to 'report')
-rwxr-xr-x | report/paper.md | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/report/paper.md b/report/paper.md index bd7ef71..32db134 100755 --- a/report/paper.md +++ b/report/paper.md @@ -42,8 +42,8 @@ figure \ref{fig:mean_face}. \end{center} \end{figure} -To perform face recognition best M eigenvectors associated with the -largest eigenvalues are chosen. We found that the opimal value for M +To perform face recognition the best M eigenvectors associated with the +largest eigenvalues (carrying the largest data variance, fig. \ref{fig:eigvariance}) are chosen. We found that the opimal value for M when when performing PCA is $M=99$ with an accuracy of 57%. For larger M the accuracy plateaus. |